Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Лазеры оптическая мощность

    Со времени создания в 1960 г. первого лазера квантовая электроника прошла в своем развитии огромный путь. Открыты различные виды лазеров, генерирующих излучение на тысячах длин волн в спектральном диапазоне примерно от 0,1 до 2000 мкм, разработаны эффективные методы управления параметрами излучения. Стали реальностью казавшиеся ранее невероятными чрезвычайно высокие мощность, степень монохроматичности, спектральная яркость и другие параметры оптического излучения. Успехи лазерной техники и быстрое развитие сфер ее применения привели не только к существенному усовершенствованию традиционных оптических методов исследования, но и к появлению принципиально новых идей и методов, новых научных направлений. Диапазон научных и практических применений лазеров постоянно расширяется. Представление об этом может дать простое перечисление примеров — лазерные спектроскопия и фотохимия, управляемый термоядерный синтез, локация и связь, контроль за состоянием природной среды, микрохирургия отдельной живой клетки, автоматический раскрой тканей и металлических листов... Без преувеличения можно утверждать, что нет ни одного естественно-научного направления или связанной с ним области техники, где бы применение лазеров уже не привело к получению новых интересных результатов или не сулило их получение в будущем. [c.159]


    Мощность, излучаемая лазером в режиме свободной генерации, т.е. без дополнительного управления, соизмерима с мощностью лампы накачки. Более высокая мощность может быть получена в режиме модулирования добротности, при котором резонатор помещается в быстродействующий оптический затвор. После накопления достаточной энергии затвор открывается на короткое время. Для резонатора длиной 60 см длительность импульса составляет 10-20 не и при энергии 1 Дж пиковая мощность достигает 50-100 МВт. Поскольку в лазерном резонаторе возможны многомодовые колебания, для увеличения мощности используют также режим синхронизации или захвата мод, позволяющий генерировать более короткие (пикосекундные) импульсы [11]. [c.99]

    Новые применения ядерной техники в управляемом термоядерном синтезе. В настоящее время во ВНИИ ядерной физики РФ ведутся работы по прямому преобразованию энергии ядерных реакций в лазерное излучение оптического диапазона [2]. Задача инерционного термоядерного синтеза решается на установке Искра-5 с применением 12-канального лазера с суммарной мощностью излучения 30 кДж и длительностью импульса 0,3 не. Оптические зеркала направляют 12 лазерных лучей на мишень диаметром 2 мм лазерное излучение трансформируется в рентгеновское излучение, которое обеспечивает 3000-кратное сжатие сферической мишени диаметром 0,03 мм, содержащей дейтерий-тритиевую смесь. Нри этом радиус мишени уменьшается в 14 раз. Сейчас создается установка Искра-6 , мощность которой будет в 10 раз превышать мощность установки Искра-5 . [c.27]

    Наибольшую мощность в зоне стимуляции обеспечивает нагрев оптическим излучением, генерируемым лампами различного типа и лазерами (рис. 1.1, а). Наиболее просто можно нагреть поверхность объекта контроля с помощью электрических ламп накаливания. Плотность нагрева может составлять до нескольких кВт/м в зоне диаметром до 1 м при произвольной длительности нагрева. Такие лампы являются гибким и практичным средством "мягкого" нагрева неметаллов. Для стимуляции металлов применяют галогенные и ксеноновые лампы, которые создают плотность мощности до 100 кВт/м в течение времени от нескольких миллисекунд до нескольких секунд. [c.20]

    Оптическая мощность современных лазеров в 10 ООО раз выше на любой частоте, чем мощность любой самой большой импульсной лампы. Очевидно, что они не просто расширяют возможности, которые давали обычные источники света. Взаимодействие молекул с фотонным полем такой огромной интенсивности приводит к новым процессам. Например, при нормальной интенсивности света одновременное поглощение двух фотонов одной молекулой представляет собой настолько редкое явление, что оно не может быть обнаружено. Но вероятность такого события возрастает пропорционально квадрату интенсивности света. Лазеры позволяют увеличить интенсивность света в 10 ООО раз, и вследствие этого вероятность двухфотонного поглощения становится на четыре порядка выше, чем вероятность поглощения одного фотона. Это позволяет нам осуществлять в экспериментах генерацию молекулярных состояний, не достижимых при однофотонном возбуждении. Более того, полная поглощенная энергия может стать достаточной для ионизации молекулы. А это открывает новые перспективы в химии ионов. Интерес к этой области исследований быстро растет, поскольку недавно были открыты ион-молекулярные реакции в межзвездном пространстве, а также потому что ионы являются основными частицами в плазме (тлеющий разряд) и при ядерном синтезе. Двухфотонная ионизация была использована для обнаружения особых молекул в специфически трудно достижимых условиях, подобных существующим в пламенах и при взрывах. Например, концентрацию оксида азота N0, который является составной частью смога, можно легко определить в пламени по количеству ионов, образующихся [c.148]


    Метод импульсного возбуждения. Молекулы возбуждают коротким оптическим или электронным импульсом и наблюдают последующее затухание флуоресценции во времени. Преимуществом метода является то, что молекулы не возбуждаются во время намерения флуоресценции. Для данного метода идеально подходят импульсные лазеры или лазеры с синхронизацией мод [186]. Прн пспользовании импульсных лазеров большой мощности, имеющих обычно низкую частоту повторения, после каждого имиульса детектируется много фотонов флуоресценции. Затухание флуоресценции может непосредственно наблюдаться на экране осциллографа [187], запоминаться в переходном устройстве [188] или выводиться на дисплей с усреднением сигналов. [c.293]

    Гелиево-неоновый лазер имеет оранжево-красное излучение при длине волны 6329 А с выходной мощностью порядка нескольких милливатт. Пропускание лазерного излучения имеет место между энергетическими уровнями неона, гелий же используется для оптической накачки неона и создания инверсной заселенности. При пропускании через гелий электрического тока его атомы переходят в возбужденные состояния в результате столкновения со свободными электронами и затем ступенчато спускаются на соответствующие энергетические уровни. Те атомы, которые попадают на уровни 2 5 и 2 s, остаются там в течение длительного времени. Постепенно атомы собираются на тех уровнях, заселенность которых достаточно высока. При столкновении возбужденного атома гелия с невозбужденным атомом неона возбуждение переносится на последний. Две другие линии наблюдаются при 3,39 и 1,15 мкм (рис. 10.22). [c.168]

    С другой стороны, выражение (I, 4-23в) соответствует рассеянному излучению с частотой Щп — vo при > Уо или Wk > > + Луо. Последнее условие может выполняться, только если состояние к — возбужденное состояние системы (рис. 1-10). В данном случае при рассеянии появляются два кванта с энергиями h (vkn — vo) и Луо соответственно. Несмотря на то, что с помощью лазеров высокой мощности методами оптической накачки можно [c.28]

    Переход 2-3 является безызлучательным. Возвращение электронов с уровня 2 на исходный уровень I сопровождается излучением на длине волны 694,3 нм (красный цвет). Оба конца рубинового стержня покрыты отражающими слоями (< и 6 на рис. 5.2, а, причем слой 4 выполнен полупрозрачным). После многократных отражений в оптическом резонаторе, образованном зеркалами и рубиновым стержнем, происходит усиление излучения и образуется мощный когерентный пучок с плоским фронтом, двигающимся вдоль оси кристалла и выходящим через полупрозрачное зеркало 4 (рис. 5.2, а). Генерация излучения продолжается до тех пор, пока заселенности уровней 1 и 2 не сравняются. Лазер на кристалле рубина длиной от 20 до 25 см и диаметром 1,5 см при накачке с помощью светового импульса длительностью 10 з с излучает в течение времени такого же порядка импульс мощностью 1 кВт. [c.98]

    Возможная работа рубинового лазера и в непрерывном режиме, но для этого требуются большая мощность оптической накачки и принятие мер для охлаждения рубина (рубин нагревается за счет того, что энергия, выделяющаяся при переходе Е, [c.523]

    Рубиновый лазер относится к категории твердотельных лазеров. Они обычно характеризуются более высокой выходной мощностью, чем газовые лазеры. Инверсная заселенность в рубиновых лазерах достигается путем оптической накачки. [c.170]

    Для расширения функциональных возможностей эндоскопов они обычно снабжаются насадками с оптическими элементами ЗН), что позволяет работать с разными увеличением, углом и направлением обзора. Эндоскопы для специальных видов контроля могут быть выполнены более сложными и содержать специальные источники света (мощные лампы накаливания, лазеры и др.) с фильтрами и преобразователями невидимых излучений в видимые. Поскольку эндоскоп является фактически устройством, переносящим изображение в пространстве и работающим в реальном масштабе времени, он может успешно использоваться с другими устройствами фиксации и обработки изображений, например фото-, кино- и телеаппаратурой. Условия освещения легко изменяются, поскольку источник света вынесен за пределы полости и его мощность можно увеличить до необходимого значения, несмотря на габариты. 06- [c.249]

Рис. 2.42. Измеренное пространственное распределение температуры в непрерывном оптическом разряде в воздухе при давлении 1 атм разряд получен с помощью СОз-лазера мощностью 6 кВт луч движется справа налево эффективная граница сходящегося светового канала показана пунктиной линией внизу изотермы, х — оптическая ось, г — радиальное расстояние от оси вверху — распределение Т(х) вдоль оси луча Рис. 2.42. Измеренное <a href="/info/135221">пространственное распределение</a> температуры в <a href="/info/3047">непрерывном оптическом</a> разряде в воздухе при давлении 1 атм <a href="/info/411885">разряд получен</a> с помощью СОз-<a href="/info/141574">лазера мощностью</a> 6 кВт луч движется справа налево эффективная граница сходящегося светового канала показана пунктиной линией внизу изотермы, х — оптическая ось, г — радиальное расстояние от оси вверху — распределение Т(х) вдоль оси луча

    Высокая степень направленности лазерного пучка позволяет создавать эффективные системы контроля профиля изделий сложной формы, например, лопаток турбин. Плоский лазерный луч, сформированный специальной оптической системой, при пересечении с контролируемой деталью образует на ее поверхности светящуюся полоску, форма которой точно соответствует профилю объекта. Телевизионная камера формирует изображение светового сечения лопатки на экране телевизионного дисплея. Одновременно видеосигнал поступает в электронный блок, состоящий из аналого-цифрового преобразователя, мини-ЭВМ и устройств регистрации данных. В памяти ЭВМ хранятся данные о координатах сечения эталонной лопатки, и при перемещении лопатки происходит их непрерывное сравнение с координатами контролируемого объекта. При превышении разности этих координат допустимого значения лопатка бракуется. В устройствах использован газовый лазер мощностью 5 мВт. Телекамера обеспечивает не менее 2000 отсчетов по любой строке изображения. [c.495]

    Зондирующее лазерное излучение с помощью поворотной призмы заводили через дно кюветы с пробой морской воды. Рассеянное излучение собирали под углом 90° к оси возбуждения. Оптическая часть системы включает в себя фильтр ОС-14 для подавления рассеянного излучения на длине волны 532 нм, линзу и монохроматор МДР-76 с системой перестройки длины волны регистрации. Разложенное в спектре рассеянное излучение регистрировали фотоэлектронным умножителем (ФЭУ-2), амплитуда электрического импульса которого запоминалась устройством выборки и хранения (УВХ-2). Часть излучения лазера заводили на ФЭУ-1 канала контроля мощности. [c.180]

    Выходная мощность полупроводниковых лазеров по сравнению с другими тинами излучателей невелика и в непрерывном режиме составляет 1—3 Вт, а в импульсном — 100—300 Вт. Вместе с тем, мощность полупроводниковых оптических квантовых генераторов, приходящаяся на единицу объема излучающего вещества, значительно выше, чем мощность других типов лазеров. [c.42]

    В работе [58] подробно рассмотрена схема ИК-лазера, в которой оптическая накачка с возбуждением фундаментальных колебаний активных молекул и генерация излучения происходят ка переходах в одних и тех же колебательно-вращательных полосах. Если в системах вращательных уровней в основном и возбужденном колебательных состояниях быстро устанавливается термодинамическое равновесие и если можно пренебречь колебательной релаксацией возбужденных молекул за время действия импульса накачки, насыщающей переход с поглощением, то на переходах, более длинноволновых, чем возбуждаемый, может быть получена генерация ИК-излучения на новых частотах с квантовым к. п. д. т], очевидно, близким к 100%. Эта схема, по-видимому, пока не реализована для случая органических молекул. Результаты работы [78], в которой получена генерация излучения в этилене на переходах с длинами волн 10,98 и 10,53 мкм в той же колебательно-вращательной полосе, где молекулы возбуждались СОг-лазером (переходы 10,27 и 10,32 мкм соответственно), трактуются ее авторами совершенно с другой точки зрения. Однако работающий по этой схеме лазер на МНз [79] — самый эффективный и мощный лазер ИК-диапазона с оптической накачкой. Лазер генерирует излучение на нескольких переходах в колебательно-вращательной полосе моды 2 в области 11,5—13 мкм при накачке молекул в той же полосе поглощения излучением СОа-лазера (табл. 5.2). Его энергетический к. п. д. т]э в случае генерации одновременно на четырех линиях в диапазоне 12—12,8 мкм достигает 16%, а средняя мощность излучения при частоте повторения импульсов 100 Гц — очень высокого значения в 20 Вт [80], уже вполне достаточного для многих целей. [c.182]

    Энергетические параметры ИК-лазеров с оптической накачкой пока не очень высоки. Во многом они определяются генерационными характеристиками источника накачки (чаще всего СОг-лазера). Накачка осуществляется, как правило, импульсными перестраиваемыми по частоте лазерами, с энергией излучения на отдельных переходах в колебательно-вращательных полосах, редко достигающей 10 Дж, а в большинстве случаев составляющей около 1 Дж. Из-за этого, в частности, энергия импульса излучения ИК-лазера с оптической накачкой лежит в диапазоне от сотых долей до сотен мДж (в лучших случаях, например в лазере на NH3, она составляет 1 Дж [63]), а мощность — от сотен Вт до сотен кВт. [c.185]

    В лазерной технике в качестве матричных решеток используется фторид трехвалентного церия. Диоксид церия нашел применение в твердотельных лазерах, благодаря высокой химической стойкости, тугоплавкости и хорошим оптическим свойствам. Применение оксидов церия, а также других оксидов РЗМ позволило увеличить мощность твердотельных лазеров непрерывного излучения. [c.558]

    Другим широко известным примером является процесс лазерной генерации. Лазер непрерывного действия представляет собой сильно неравновесную открытую систему, образованную активными атомами и модами электромагнитного поля в резонаторе. Эта система выводится из равновесия благодаря постоянному притоку энергии от внешнего некогерентного источника оптической накачки. Подступающая энергия не накапливается в лазерной системе, а непрерывно покидает ее в форме электромагнитного излучения и потока тепла. Когда интенсивность накачки мала, генерируемое лазером излучение состоит из случайных, не сфазированных между собой цугов волн. Если, однако, повышать мощность накачки, то после достижения некоторого порога лазерное излучение становится когерентным, т. е. начинает представлять собой как бы один гигант- [c.5]

    На рис. 2.41 показаны фотографии непрерывно горящего оптического разряда, па рис. 2.42 — температурное поле разряда. Температуру измеряли по континууму излучения в узком интервале длин волн вблизи Л = 5125 А и интенсивности излучения спектральных линий атомов и ионов азота. Центр плазменного сгустка на рис. 2.41 сдвинут на 1,1 см к источнику излучения. Температура в центре сгустка при Р = = 2 атм была равна 18000 К в Аг, 14000 К в Хе. Нри Р = 6 атм в Н2 температура равна 21000 К, в N2 при 2 атм — 22000 К. Температура всегда падает монотонно от центра к периферии плазменного сгустка. Размеры сгустка всегда находятся в пределах 3 -Ь 15 мм, плазма вытягивается вдоль оптической оси. Очень важные в практическом отношении зависимости показаны на рис. 2.43 — пороговые мощности лазеров при возбуждении оптических разрядов в различных газах в зависимости от давления. Во всех исследованных газах пороговая мощность лазера резко возрастает с давлением. [c.96]

    Эффективность применения лазера зависит от многих параметров. В первую очередь это касается давления чем выше давление в разрядной камере, тем эффективнее работает лазер. Следуюш ий фактор — влияние размеров фокального пятна при пробое. Третий фактор запыленность технологической среды обычно порог оптического пробоя понижается на порядок и более с повышением запыленности, однако эффект запыленности был существенным для лазера на СО2 и оставался незначительным для неодимового или рубинового лазеров. Очень важным параметром лазера является частота повторения импульсов чем выше этот параметр, тем стабильнее кластер заряженных частиц в зоне индуктора. На нынешнем уровне предварительного анализа можно предсказать, что для инициирования и постоянной поддержки высокочастотного индукционного разряда в UFe следует выбрать лазер с выходной мощностью не ниже 0,3 Дж, с длительностью импульса от нескольких наносекунд до lO-i-20 не, с максимально возможной частотой повторения импульсов и с соответствующим пропусканию оптическим материалом лазерной апертуры. [c.547]

    Первый чаще всего реализуется в газовых лазерах с электронным возбуждением. Возбуждение обычно осуществляется путем постоянного газового разряда. При оптической накачке необходим мощный источник возбуждающего света. В режиме квазистационарной генерации лазер излучает свет относительно постоянной интенсивности. Его максимальная мощность при этом сравнительно мала и ограничивается тепловыми потерями. [c.133]

    Для получения гигантских импульсов в резонатор лазера помещают кювету с красителем, который поглощает в области излучения лазера (рис. 6.2,а). Краситель действует как оптический затвор и при малых мощностях накачки он ослабляет излучение лазера. При больших мощностях накачки в возбужденное состояние переводится так много молекул красителя, что поглощение раствора ослабевает (просветление). Это приводит к усилению лазерного излучения, дальнейшему ослаблению поглощения красителя и т. д. до тех пор, пока вся энергия возбуждения лазерного вещества не выделится как гигантский световой импульс. [c.133]

    Для усиления фотопотока, поступающего с фотоэлектронного умножителя, применяли фотоэлектрический усилитель Ф-120/2 с коэффициентом усиления Кус = 7000. Усилитель питается постоянным током. Индикатрисы записывали осциллографом Н-107. Для питания фотоэлектронного умножителя разработан малогабаритный высоковольтный стабилизированный выпрямитель, который представляет собой двухдиапазонный стабилизированный источник напряжения от 600 до 2000 В. Питание контрольноизмерительной аппаратуры установки осуществляется от универсального блока питания со следующими пределами напряжения и мощности 127 В — Ю Вт 27 В —"30 Вт 2x50 В—3 Вт 1 -7-8 В — 3 Вт 2 В — 0,6 Вт. Для удобства юстировки экспериментальной установки лазер, элементы оптической системы, фото- электронный умножитель и кювета крепятся на оптической скамье и закрываются светозащитным кожухом. [c.316]

    На рис. 7.17 показано устройство установки. Слева направо располагаются лазер на оптической скамье, измеритель -энергии лазерного пучка, ионный источник, электромагнит и система регистрации на фотопластинке. Источником лазерного излучения служил рубиновый лазер, работающий в области Я = 694,3 нм с длительностью импульса от 13 до 40 не, энергия от 8 до 23 мДж, мощность лазера 1 Мвт. [c.223]

    Что же касается щума н фона, то, с одной стороны, вопрос заключается в том, чтобы свести к минимуму их источники, в особенности источники шума с частотным спектром вида 1//, который устанавливает конечный предел улучшения отношения сигнал/шум, получаемый при усредненных измерениях [37]. Но, с другой стороны, для ироведения селективной обработки следует использовать все факты, которые делают эти помехи отличными от искомого сигнала. Таким образом, проблема заключается в тщательном выборе аппаратуры и компонентов, тщательном планировании распределения ступеней фильтрации, принимая во внимание расположение всех источников шума, включая те, которые связаны с фильтрами (см., например, разд. 7.6.1). Это также означает получение сигналов, которые легче отличить от шума. Так, например, в присутствии преобладающего устойчивого шума, не связанного с измеряемым светом, вместо непрерывных лазеров лучше применять импульсные лазеры даже с низкой усредненной по времени оптической мощностью. Полезна также модуляция оигналов перед ступенями, добавляющими низкочастотный шум (особенно шум с частотным спектром вида /f, разд. 7.3,3). [c.535]

    Флуоресцентные измерения обладают рядом преимуществ в сравнении с абсорбционными. В частности, оптическое поглощение промежуточного продукта, содержащегося в низкой концентрации, вызывает незначительное изменение относительно большой интенсивности зондирующего пучка. Шум , получающийся вследствие случайных флуктуаций интенсивности света, а также из-за статистической природы пучка фотонов, ограничивает чувствительность, достижимую в абсорбционном эксперименте. В люминесцентном эксперименте, напротив, нет излучения кроме того, которое испускается возбужденными соединениями. Статистические ограничения продолжают лимитировать точность, с которой могут измеряться концентрации, но достижимая на практике предельная чувствительность люминесцентного эксперимента обычно значительно выше, чем абсорбционного. По этой причине люминесценция часто используется для изучения веществ, первоначально находящихся в основном состоянии, путем специального оптического возбуждения их в более высокое люминесцентное состояние. В отдельных случаях описанные ранее линейчатые газооазоядные. лям-пы могут использоваться для возбуждения резонансной флуоресценции атомов (например, Н, О, С1) и радикалов (например, ОН). Поскольку флуоресценция изотропна, ее можно регистрировать под углом к направлению возбуждающего пучка. С большим успехом в качестве источника возбуждения можно использовать перестраиваемые лазеры. Лазеры обеспечивают существенно большую гибкость эксперимента, чем газоразрядные лампы. В частности, с их помощью можно возбуждать значительно большее число разнообразных молекулярных частиц (например, ОН, КОз, СН3О, С2Н5О). Более высокая мощность возбуждающего излучения от лазеров обеспечивает высокую чувствительность. Индуцированная лазером флуоресценция (ИЛФ) стала наиболее ценной методикой изучения промежуточных продуктов реакций в газовой фазе. При этом по- [c.196]

    Экспериментальная установка для определения дисперсности частиц от 2 до 100 мкм методом светорассеяния на малых углах (рис. 106) включает источник света, оптическую систему, кювету и регистрирующую аппаратуру. Источником монохроматического света служит гелий-неоновый лазер ОКГ-12, который является генератором непрерывного когерентного излучения с длиной волны 6328 А и мощностью 10 мВт. Оптическая система установкй включает нейтральный светофильтр, конденсорную и коллима торную линзы, точечную, ирисовую и приемную диафрагмы Основные параметры оптической системы установки  [c.314]

    Красящие вещества используют в качестве активных сред лазеров и в качестве так называемых модуляторов добротности оптических квантовых генераторов. В качестве лазерных сред красители можно использовать в твердой, жидкой и газообразной фазе. Особенно удобны жидкостные лазеры на красителях. Большим преимуществом применения лазеров на красителях является возможность перестраивать в них длину волны генерируемого излучения в широкой непрерывной области спектра и получать генерируемое излучение в виде узкой спектральной линии. Энергия импульсных лазеров на красителях варьируется от нескольких микроджоулей до>10 Дж в импульсе, а пиковая мощность — от милливатт до сотен мегаватт получены импульсы с энергией в несколько сотен джоулей. В некоторых случаях требуются лазерные импульсы короткой длительности с помощью лазеров на красителях могут быть получены импульсы с длительностью от 1—2 до десятков наносекунд. Лазеры на красителях перспективны для создания миниатюрных лазерных устройств. [c.222]

    При работе с аппаратурой оптического контроля качества должны соблюдаться общие правила по технике безопасности и охране труда. Оптический контроль происходит при повышенной нагрузке на глаза оператора, что надо учитывать при его организации. Особую опасность могут представлять источники, несущие концентрированные потоки световой энергии, в первую очередь оптические квантовые генераторы — лазеры. При их использовании в процессе проведения контроля должна быть произведена гигиеническая оценка условий контроля и особенно должна быть проанализирована опасность нанесения вреда людям отраженным или рассеянным излучением, в том числе и от предметов, которые могут случайно попасть на линию распространения лазерного излучения металлические части, стеклянные поверхности, лист бумаги, хорошо отражающие участки стен и т. д. Поэтому работа с лазерными установками, особенно при значительных его мощностях должна производиться в специальных помещениях с использованием защитных очков со светофильтрами, задерживающими большую часть излучения, и при экранировании наиболее опасной части установки. Следует помнить, что наиболее опасно облучение глаз, они поражаются излучением квантового генератора настолько быстро, что при облучении трудно принять защитные меры и их в случае опасности необходимо предусмотреть заранее. Максимально допустимые уровни плотности потока мощности в зависимости от типа лазера, длины волны и режима работы оператора составляют для кожи 0,1 Дж/см2, а для глаз — 0,002— 1,0 мкДж/см . [c.223]

    Определенные возможности возникают при использовании более коротковолновых лазеров, например, твердотельных, работающих в квазинепре-рывном режиме. Использование лазеров на основе иттрий-алюминиевого граната, активированного неодимом (Л = 1, Об мкм), позволяет создать режим кристаллизации, при котором расплав полностью поглощает лазерное излучение, а кристалл практически не поглощает. За счет этого создается достаточно высокий градиент температуры, необходимый для устойчивого роста монокристалллов. А если учесть компактность твердотельных лазеров по сравнению с газовыми, а также их мощность излучения, достигающую 1000 Вт, то становится очевидным, что лазеры, работающие в квазинепрерывном режиме, весьма перспективны. При использовании твердотельных лазеров, однако, возникают технические трудности старта, поскольку исходное вещество при комнатной температуре оптически прозрачно. Для старта необходим предварительный прогрев вещества согласно методике гарниссажа. [c.138]

    Система Антисвид на основе лазера непрерывного действия мощностью не более 10 мВт позволяет осуществлять обнаружение с вероятностью не хуже 0,9 скрытых малогабаритных ТВ-камер с диаметром оптического зрачка от одного до нескольких миллиметров на расстоянии до 12. .. 15 м. [c.648]

    Лазер для голограммной интерферометрии должен иметь мощность около 15 мВт, чтобы гарантировать короткие экспозиции. В типичной установке (L 1 и L2 имеют фокусное расстояние 36 см с пространственными фильтрами в 20 мкм и оборудованы 30-кратным объективом микроскопа) типичная экспозиция для базовой голограммы около 1/25 с на пластинах AGFA 8Е75. Оптическая установка должна быть защищена от вибрации. Для устранения неизбежного сжатия базовой голограммы при изменении влажности атмосферы применяют водостойкие держатели пластины (фирмы "Джоудон инжиниринг", Энн Арбор, Мичиган), обеспечивающие отличную стабильность искривленных полос в течение длительного времени. [c.157]

    В связи с тем что время флуоресценции типичного красителя составляет 5-10 сек, источник оптической накачки для лазеров ча красителях должен обеспечивать высокие мощное)и накачки, чтобы превысить потери на спонтанное излучение. Необходимую мощность накачки можно получить, используя разнообразные импульсные лампы или интенсивное излучение другого лазера. Второй способ дает значительно большую мощность накачки и более эффективен. Органические красители, для которых наблюдался лазерный эффект, перечисленыв табл- 33.17 [14]. Здесь же приведены длины волн центра линии генерации, полученные как при накачке другим лазером, так и при накачке излучением импульсной газоразрядной лампы. [c.759]

    Приведенные данные показывают, что наибольшая интенсификация процесса может быть достигнута при использовании зиеевиковых трубчатых реакторов, аппаратов с вихревым слоем ферромагнитных частиц, а также ультразвуковых и светогидравлических аппаратов. Последние, несмотря на значительное превосходство их над остальными аппаратами по удельной мощности, в настоящее время еще имеют низкий коэффициент полезного действия, весьма малые полезные объемы рабочих камер и относительно дорогие в связи с необходимостью использования в качестве излучателей мощных квантовых оптических генераторов (лазеров). [c.60]

    Весьма йерспективньш источником для световой сварки является оптический квантовый генератор— лазер. В настоящее время мощность лазерных источников достаточна для расплавления любых металлов. Для световой сварки могут применяться оптические квантовые генераторы как импульсного действия с твердым активным веществом, в качестве которого наиболее часто используется синтетический рубин (окись алюминия с добавкой окиси хрома), так и непрерывного действия — ионно-газовый лазер. Излучение лазера с помощью оптической системы может быть сфокусировано в пятно очень малых размеров, обладающее высокой плотностью энергии. [c.156]

    Лазер ассоциируется у нас со сверкающим лучом, проходящим через стальной лист, или с блестящим пятнышком в космическом пространстве. Но для ученого крастота лазера заключается в его способности давать световой пучок чрезвычайно высокой интенсивности, огромной мощности, необычайно высокой оптической чистоты и (или) чрезвычайно короткой длительности. Для каждого конкретного эксперимента конструкцию лазера выбирают такой, чтобы максимально реализовать одно из этих качеств, необходимое в данном случае. Обычно при этом приходится жертвовать чем-то другим. Необходимость искать компромиссные решения диктуется принципом неопределенности. Согласно фундаментальному закону квантовой механики, длительность светового импульса связана с его спектральной чистотой и ограничивает ее. Так, например, в соответствии с принципом неопределенности, при очень коротком импульсе длительностью всего в одну пикосекунду (10" с ) возникает неопределенность в частоте (цвете) по меньшей мере в 5 см Чем больше разброс частоты, тем больше теряется информации о вращениях молекул в газе. Однако если для обнаружения индивидуальных вращательных состояний нужна линия шириной всего 0,005 см то при изучении интересующей нас молекулы мы должны применять импульсы длительностью по крайней мере не меньше одной наносекунды (10 с). Это ограничение лишает нас временной информации о состояниях или событиях, протекающих за время, меньшее чем одна наносекунда. [c.208]

    Энергию вводят в плазму при помогци луча лазера, сконцентрированного в какой-то точке объема, изолированного от окружаюгцей среды соответствуюгцим ограждением или без него [16]. Схема эксперимента по возбуждению оптического разряда показана на рис. 2.39. Разряд горит в фокусе или вблизи пего, если плотность потока могцности достаточно велика. В качестве источника энергии используется газовый лазер на СО2, дающий излучение в инфракрасном диапазоне электромагнитного спектра. Коэффициент поглощения светового излучения в плазме круто падает с увеличением частоты. Поэтому возбуждение оптического разряда на частотах видимого света потребовало бы мощности, превышающей мощность излучения в инфракрасном диапазоне в 10 Ч-10 раз. [c.93]

    Схема расположения аппаратуры показана на рис. 18.1. Гелиево-неоновый лазер фирмы Spe tra-Physi s, In ., alifornia,, модель 145-01, мощностью 2 мВт и постоянным значением длины волны света 632,8 нм укрепляли на оптической скамье таким образом, чтобы луч попадал на образцы волос и давал на экране дифракционную картину. Экран располагался примерно на расстоянии 1 м от образцов. [c.305]


Смотреть страницы где упоминается термин Лазеры оптическая мощность: [c.99]    [c.564]    [c.688]    [c.196]    [c.464]    [c.149]    [c.95]    [c.233]    [c.203]   
Возможности химии сегодня и завтра (1992) -- [ c.148 ]




ПОИСК





Смотрите так же термины и статьи:

Лазер

Лазер мощность

УАС-лазер лазеры



© 2025 chem21.info Реклама на сайте