Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Фриделя Крафтса электрофильного замещения

    Реакция. Внутримолекулярное ацилирование по Фриделю-Крафтсу. Электрофильное замещение в ароматическом ряду. Во избежание межмолекулярных реакций данное превращение следует проводить при сильном разбавлении. [c.188]

    Реакция. Синтез ароматического кетона взаимодействием ароматического соединения с хлорангидридом кислоты в присутствии кислоты Льюиса (ацилирование но Фриделю-Крафтсу). Электрофильное замещение в ароматическом ряду. [c.541]


    Хлорангидрид из карбоновой кислоты и трихлорида фосфора Ацилирование по Фриделю-Крафтсу (электрофильное ароматическое замещение) Энантиоселективное восстановление прохирального кетона хиральным комплексным гидридом Число стадий 3 Общий выход 36% [c.632]

    Неослабевающий интерес исследователей к изучению структуры и состава комплексов ароматических соединений с катализаторами Фриделя — Крафтса объясняется тем, что выяснение этого вопроса в значительной степени облегчает познание закономерностей электрофильного замещения. Еще в ранних работах на основании изменения в ультрафиолетовых спектрах поглощения было установлено, что ароматические углеводороды при взаимодействии с СЬ, Вгг и Ь образуют комплексы, проявляя при этом основные свойства. Кроме того, было показано, что при растворении НС1 в ароматических углеводородах получаются комплексы состава 1 1, не вызывающие заметных изменений в спектрах поглощения, а в экспериментах с D I обмена с водородными атомами ароматических ядер не происходило. Ароматические углеводороды при взаимодействии с сильными кислотами Льюиса проявляют себя как основания, образуя двойные (ArR—МХ ) и тройные (ArR— MX —НХ) комплексы. [c.79]

    Перечень типичных реакций образования электрофильных частиц, участвующих в реакциях ароматического замещения, дан в работе [5]. Электрофильное замещение в ароматическом ядре протекает в реакциях нитрования, сульфирования, галоге-нирования, алкилирования и ацилирования по Фриделю — Крафтсу. [c.32]

    Реакции замещения. В основном, это реакции электрофильного замещения (5е). К ним относятся реакции галогенирования, нитрования, сульфирования, реакции алкилирования и ацилирования (реакции Фриделя—Крафтса) и др. [c.282]

    При алкилировании и ацилировании ароматических углеводородов получаются соответственно их алкильные и ацильные производные. Реакции алкилирования и ацилирования ароматических углеводородов, которые относятся также к реакциям электрофильного замещения, называются реакциями Фриделя — Крафтса. [c.297]

    Важнейшие реакции замещения в ароматическом ряду, такие, как галоидирование, нитрование, сульфирование, реакция Фриделя—Крафтса и др., относятся к так называемым реакциям электрофильного замещения, т. е. вступающие группы  [c.444]

    Электрофильное замещение пиридинов по атомам углерода идет с большим трудом. Они нитруются и сульфируются только в весьма жестких условиях и, как правило, с очень низкими выходами. В реакции Фриделя — Крафтса пиридины не вступают, а менее активные электрофильные реагенты, не способные реагировать с бензолом, тем более не могут заместить водород у атомов углерода в пиридине. [c.43]


    Реакция. Электрофильное ароматическое замещение в присутствии хлорида железа (П1) в качестве кислоты Льюиса (алкилирование по Фриделю-Крафтсу). Стерические факторы в данном случае затрудняют исчерпывающее алкилирование. [c.168]

    Реакции электрофильного замещения охватывают широкий круг реакций нитрование, галогенирование, сульфирование и реакции Фриделя — Крафтса свойственны почти всем ароматическим соединениям реакции типа нитрозирования и азосочетания присущи лишь системам с повышенной активностью такие реакции, как десульфирование, изотопный обмен, и многочисленные реакции циклизации, которые с первого взгляда кажутся совсем различными, но которые также оказывается целесообразным отнести к реакциям того же типа. По своей синтетической важности реакции электрофильного замещения, вероятно, важнее любого другого типа органических реакций. Эти реакции служат источником получения почти любого типа ароматических соединений они позволяют осуществить прямое введение ряда заместителей и групп, которые далее могут быть замещены или превращены в другие заместители, включая даже дополнительные ароматические кольца. [c.330]

    Как мы увидим в разд. 12.7, алкилирование по Фриделю — Крафтсу представляет собой довольно сложный процесс. Очевидно, оно может протекать по двум механизмам. В настоящее время для нашего обсуждения существенно, что оба механизма укладываются в схему электрофильного замещения в ароматическом ряду. [c.341]

    В разд. 11.11 было указано, что алкилирование по Фриделю — Крафтсу может протекать по двум механизмам. Оба механизма можно рассматривать как электрофильное замещение в ароматическом ряду они отличаются только природой электрофила. [c.364]

    Ароматическое кольцо, содержащее карбоксильную группу, способно участвовать в реакциях электрофильного замещения в ароматическом ряду, характерных для кольца, содержащего дезактивирующую и<ета-ориенти-рующую группу. Дезактивация в этом случае настолько сильна, что реакция Фриделя — Крафтса не происходит. Подобное влияние СООН-группы обусловлено ее сильным электроноакцепторным характером (разд. 11.16). [c.565]

    Реакция. Снитез ароматического кетона ацилированием ароматического углеводорода хлорангидридом карбоновой кислоты, катализируемым кислотами Льюиса (аш1лирование по Фриделю-Крафтсу). Электрофильное замещение в ароматических соединениях (ср. И-3). [c.482]

    Получение. Алкилпроизводные пентаборана получаются при действии галогеналкилов или олефинов на пентаборан. При алки-лировании в условиях электрофильной реакции по Фриделю — Крафтсу идет замещение у вершинного атома бора, где плотность заряда наибольшая. В условиях нуклеофильной атаки при реакции олефинов с В5Н9 замещение идет у атомов бора, лежащих у основания пирамиды. [c.300]

    Учитывая эти факты, подтверждающие карбоний-ионный механизм для третичных алкилпроизводных, а также более раннее рассмотренио механизма электрофильного замещения в ароматическом ядре (XLHI), был предложен следующий детализированный механизм для реакции ароматических соединений с третичными галоидалкилами в условиях реакции Фриделя-Крафтса (LXXX)  [c.437]

    Механизм реакции алкилирования Фриделя-Крафтса позволил объяснить многие явления, до сих пор считавшиеся аномальными. Механизм других электрофильных реакций, таких, как галоидирование, нитрование и сульфирование, в настоящее время также стал понятным. По-видимому, развитие истинно количественной теории, охватывающей всю область электрофильного замещения в ароматических соединениях, находится на цравильном пути к своему разрешению. [c.481]

    Для аренов наиболее характерны реакции электрофильного замещения нитрования, сульфировашш, галогенирования, алкилирования и ацилирования по Фриделю — Крафтсу, нитрозирования и т. д. Механизм всех этих реакций единый  [c.150]

    Реакция Фриделя — Крафтса протекает по механизму электрофильного замещения. Хлористый алюминий образует с галогеналки-лом или галогенацилом комплексное соединение. [c.189]

    В настоящее время известно уже большое число л-комплексов на основе циклобутадиена, например димерный л-компяекс (XI) или комплекс незамещенного циклобутадиена (XII). В отличие от самого циклобутадиена этот комплекс высоко стабилен и охотно вступает в типичные реакции электрофильного ароматического замещения (дейтерирования, ацилирования по Фриделю—Крафтсу, меркуриро-вапия и т. д.) без изменения принципи шьной сгруктуры. [c.262]

    Кислотные свойства циклопентадиена (р/Са 15), который достаточно легко теряет протон, переходя в сравнительно устойчивый карбанион, можно рассматривать как подтверждение устойчивости его аниона, стабилизованного за счет ароматизации. Квазиароматичность не может быть продемонстрирована электрофильным замещением, так как атака реагентом Х+ приведет просто к неспецифическому связыванию с анионом. Истинный ароматический характер подобных квазиароматических систем (участие в реакции Фриделя — Крафтса и т. д.) был показан на примере таких особо стабильных соединений нейт- ральной природы, как ферроцен X (который получается взаимодействием между 1Ха и РеС12)  [c.256]


    В си ту сказанного становится понятным, почему большинство классических синтетических методов, описываемых в терминах ионных реакций, основаны по сути дела на одной и той же общей схеме сочетания ионный нуклеофил -ь ковалентный элсктрофил, а не на альтернативном варианте ионньгй электрофил + ковалентный нуклеофил. Очевидным исключением в этом отношении является электрофильное замещение в ароматическом ряду (реакция Фриделя—Крафтса), в которой именно карбокатионные реагенты выступают в роли электрофилов, а нуклеофилами служат ковалентные ароматические субстраты. При этом следует отметить, что жесткость классических условий проведения алкилирования или ацилирования по Фриделю— Крафтсу делают этот метод малоприменимым по отношению к кислотолабильным субстратам, и поэтому использование этой реакции в полном син- гезе ограничено. Между тем за последние 10—15 лет псе большее внимание уделяется развитию новых эффективных и общих методов стабилизации карбокатионов как реагентов и интермедиатов, и к настоящему времени уже накоплено достаточно данных, позволяющих утверждать, что синтетические методы, основанные на реакциях ионных электрофилов с ковалентными нуклеофилами, могут явиться существенным дополнением к уже существующим традиционным методам образования связи С-С с помощью карбани-онных реагентов. Рассмотрим некоторые примеры, иллюстрирующие это ут-Верадение. [c.125]

    Структуры и и III с центрами большой электронной ллотности в а-положениях обусловливают то, что реакции электрофильного заме щения IB тио ф 0не протекают в -положениях. Замещение такого типа проходит легче, чем в случае бензола, что показано возможностьк проведения реакции Фриделя—Крафтса между тиофеном и хлористым ацетилом в присутствии слабого катализатора, хлористого цинка применение хлористого алюминия может вызвать осмоление. Бензол, вы деленный из каменного угля, можно очистить от тиофена встряхива нием на холоду с концентрированной серной кислотой, так как пре имущественно сульфируется тиофен, который удаляют вместе с кислотой. [c.195]

    Наряду с этим электрофильный катализатор может влиять и на ну1<л о-флльность реагента В, вступая с иим во взаимодействие (см. разд. Г,7,1). Такой случай рассматривался также при обсуждении электрофильного ароматического замещения, где указывалось на невозможность ацилирования ароматических аминов по Фриделю — Крафтсу в присутствии хлорида алюминия (см. разд. Г,5.1.7.1), [c.48]

    Электрохимия органических соединений, под ред. М, Байаера и др., пер. с англ.. М., 1976 Электросинтез мономеров, М., 1980 Ф и о ш и н М. Я., Смирнова М, Г., Электросинтез окислителей и восстановителей, 2 нзд.. Л,, 1981, М. Я. Фиошин. ЭЛЕКТРОФИЛЬНЫЕ РЕАКЦИИ, гетеролитические реакции орг, соед, с электроф, реагентами (электрофплами), т. е. катионами или молекулами, к-рые имеют, по крайней мере, одну своб. орбиталь или центры с пониж. электронной плотностью. Наиб, изучено электроф. замещение в аром, ряду — нитрование, сульфирование, галогенирование, алкилирование и ацилирование по Фриделю — Крафтсу, азосочетание, к-рые идут по схеме  [c.703]

    Алкилирование но Фриделю-Крафтсу относится к немногочисленной грунне обратимых реакций электрофильного ароматического замещения, подчиняющихся темодинамическому контролю, когда в продуктах реакции преобладают термодинамически более стабильные 1,3-дналкил- илн 1,3,5-триалкилбензолы  [c.1098]

    Эти реакции уже были рассмотрены в предыдущих главах. R — алкильная или- арильная группа. Реакции 16 и 17 представляют собой электрофильное ароматическое замещение, где АгН — ароматический углеводород (реакции ацилирования Фриделя — Крафтса при помощи галогеыангидридов (10) и ангидридов кислот (17)1. Нетипичные реакции не приводятся, [c.9]

    Для получения максимальных выходов по реакции Фриделя — Крафтса с ангадридами [12, 13] берут два моля хлористого ялю-ми ния на моль аигидрида. Одиа молекула катализатора вызывает расщепление ангидрида ( Пр1гчем одна из карбоксильных групп Превращается в смешанную алюминиевую соль, а другая — в хлорангщфид ) вторая молекула хлористого алюминия играет обычную роль катализатора в реакции Фриделя — Крафтса. В согласии с такой точкой зрения и современной теорией замещения в ароматическом ядре, реакция может быть представлмга как взаимодействие ароматического ядра с ком нлексом I, имеющим электрофильный центр на ацильном ионе  [c.197]

    Р-ция П.с. с электроф. реагентами протекает обычно в более жестких условиях, чем с нефторир. аналогами с образованием продуктов электроф. присоединения для водородсодержащих П. с. возможно также электроф. замещение (галогенирование, сульфирование, нитрование, алкилирование и ацилирование по Фриделю-Крафтсу). Направление р-ции зависит от строения полнфторароматич. соед., природы электрофильного реагента и растворителя, напр.  [c.37]

    Этот же продукт при нагревании с ароматическими соединениями, легко вступающими в реакции ароматического электрофильного замещения (антрацен, дурол, нафталин), реагирует по карбоксильной, а не по сульфохлоридной группе, давая соответствующие сульфированные кетоны Но в присутствии катализаторов Фриделя-Крафтса реакция протекает по сульфонилхло-ридной группе с образованием сульфонов  [c.313]

    Некоторые широко распространенные реакции электрофильного замещения вовсе не идут с пиридинами. Таковы, например, реакции ацилирования и алкилирования по Фриделю — Крафтсу и реакции Гёша (эти реакции не идут также ни с нитробензолом, ни с ацето-феноном). Не удается осуществить С-замещение пиридина и действием более мягких электрофильных агентов, не реагирующих с бензолом. Пиридин не вступает в реакцию Манниха, не сочетается с солями диазония, не нитрозируется. [c.59]

    Электрофильное замещение в ароматических соединениях [2а]. Особое синтетическое значение имеют реакции электрофильного замещения, позволяющие вводить ряд функциональных групп непосредственно в ароматические системы. Образование связи С—С посредством алкилирования по Фриделю-Крафтсу алкилгалогенидами, спиртами или алкенами в присутствии кислот Льюиса (И-1, И-2) приводит к алкилароматическим соединениям ацилирование по Фриделю-Крафтсу хлорангидридами кислот (И-3) или ангидридами кислот (И-4) и кислотами Льюиса дает арилкетоны формилирование (реакция Вильсмейера) активированных ароматических соединений под действием ДМФА-оксихлорида фосфора дает ароматические альдегиды (И-5), а присоединение по Михаэлю ароматических соединений к а,Р-ненасы-щенным кетонам приводит к р-арилкетонам (И-6). Комбинированное применение меж- и внутримолекулярных реакций Фриделя-Крафтса показано на примере синтеза бензосуберона (И-17). [c.167]

    Реакция. Синтез бензоилкарбоновой кислоты взаимодействием бензола с циклическим ангидридом дикарбоновой кислоты в присутствии безводного хлорида алюминия. Ацилирование по Фриделю-Крафтсу ароматических углеводородов, электрофильное замещение в ароматическом ряду. [c.186]

    Во-вторых, необходимо соблюдать определенные предосторожности, чтобы избежать полиалкилирования. Из всех реакций электрофильного замещения только при алкилировании по Фриделю — Крафтсу в бензольное кольцо вводится группа, которая его активирует. При нитровании, например, в ароматическое кольцо вступает NOj-rpynna дезактивирующий эффект NOj-rpynnbi затрудняет дальнейшее нитрование той же самой молекулы. По этой же причине редко происходит полисульфирование или поли-галогенирование. При алкилировании по Фриделю — Крафтсу в ядро вводится алкильная группа, которая активирует ядро по отношению к дальнейшему алкилированию. Чтобы предотвратить полиалкилирование, обычно используют избыток алкилируемого соединения, так же как при галогенировании алканов (разд. 2.8). [c.367]

    Нитрозирование в кольцо представляет собой реакцию электрофильного замещения в ароматическом ряду, причем атакующим реагентом служит нитрозоний-ион N0+ или какие-то иные частицы (HjO+—N0 или NO I), которые могут легко переносить N0+ на кольцо. Нитрозоний-ион — очень слабый злектрофил по сравнению с реагентами, участвующими в нитровании, сульфировании, галогенировании и реакции Фриделя — Крафтса ни- [c.722]


Смотреть страницы где упоминается термин Фриделя Крафтса электрофильного замещения: [c.392]    [c.218]    [c.79]    [c.131]    [c.485]    [c.354]    [c.293]    [c.73]    [c.324]    [c.342]   
Основы органической химии (1983) -- [ c.30 , c.100 , c.101 , c.105 , c.111 , c.139 ]




ПОИСК





Смотрите так же термины и статьи:

Замещение по Фриделю Крафтс

Замещение электрофильное

Фридель

Фриделя Крафтса

Электрофильное замещение ацилирование по Фриделю Крафтсу

Электрофильное замещение реакция Фриделя—Крафтса

Электрофильность



© 2025 chem21.info Реклама на сайте