Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Осредненная местная скорость

    Скорость местная — скорость в данной точке. Скорость осредненная — средняя величина местных скоростей за достаточно большой промежуток времени. [c.6]

    Скорость осредненная — средняя величина местных скоростей за достаточно большой промежуток времени. [c.6]

    V — коэффициент перемежаемости t t — время существования турбулентного режима течения /г — общее время наблюдения 2в — предельная толщина вязкого подслоя t(, — период роста вязкого подслоя Ыт> Ыв — местная скорость турбулентного и вязкого течения в подслое Нх, г — продольная и вертикальная составляющая осредненной местной скорости [c.6]


    Осредненная местная скорость — средняя скорость в данной точке, определяемая за достаточный промежуток времени. [c.13]

    QgB — среднегодовой расход водотока 95%-ной обеспеченности вл — суммарный масштаб влияния центра урбанизации на водоток и — осредненная местная скорость [c.5]

    Измерения скоростей в различных точках потока чувствительными самопишущими приборами (например, термоанемометром с осциллографической записью) обнаруживают пульсации скоростей, т. е. весьма быстрые и беспорядочные их колебания около некоторых средних значений, которые называют осредненными местными скоростями. На рис. 2-8 изображены пульсации продольной скорости в определенной точке потока. [c.121]

    Живое сечение — поверхность, проведенная в пределах потока жидкости, нормальная в каждой своей точке к осредненной местной скорости в этой точке,  [c.12]

    Здесь и — осредненная местная скорость на расстоянии у ОТ стенки трубы макс—скорость по оси трубы Гц — радиус трубы к — коэффициент сопротивления по длине г — расстояние от оси трубы. [c.31]

    Из-за большой инерционности прибора, измерения рассмотренным способом позволяют получать в турбулентном потоке только осредненные во времени значения местных скоростей. Измерения осредненных скоростей по осред- [c.133]

    Местные скорости непрерывно изменяются, колеблясь около некоторой постоянной величины, называемой местной осредненной скоростью. [c.41]

    Измерение местных скоростей потока в трубопроводе обычно производится гидродинамическими трубками или трубками полного напора с одновременным измерением пьезометрического напора на стенке трубопровода. В турбулентном потоке эти приборы, обладающие значительной инерционностью, позволяют измерять лишь осредненные величины скоростей. Для уменьшения влияния измерительных приборов на поток следует по возможности уменьшать их размеры. Достаточная точность измерений обеспечивается в том случае, если площадь, занимаемая введенной в поток частью трубки, не превышает 5% площади сечения потока. В этом отношении наиболее удобны трубки полного напора, диаметр которых может быть доведен до 1—2 мм и которыми ввиду этого можно пользоваться для измерения скоростей в трубопроводах различных диаметров. [c.98]

    Считая, что вихри перемещаются относительно неподвижной точки наблюдения со скоростью, равной осредненной местной скорости течения и, легко установить связь между временным и пространственными масштабами турбулентности [c.40]

    Так как пульсации имеют беспорядочный, случайный характер, установить зависимости между мгновенными характеристиками потока оказывается невозможным. Вместе с тем для большинства технических задач существенны не мгновенные пульсирующие величины местных скоростей и напряжений, а лишь их осредненные во времени значения. Поэтому при гидравлических расчетах турбулентных потоков обычно пользуются их осредненными характеристиками. [c.122]


    Предыдущие замечания относятся также к течению суспензий через местные сопротивления, но при определении Др возникают дополнительные трудности. Определение осредненного по сечению полного давления можно распространить и на суспензии, но в это определение войдут скорости частиц и жидкости, а также распределение концентраций по сечению. Поскольку в настоящее время мы не располагаем прибором для измерения этих скоростей и концентрации в потоке, который обычно не является однородным, то такое обобщение не представляет практического интереса. Поэтому ограничимся случаем, когда средние скорости жидкости и частиц практически параллельны некоторому направлению, и распределения давлений во входном и выходном сечениях местного участка мало отличаются от гидростатического. Тогда гидростатическое давление pg = р + рат г (где р — среднее давление в точке, р т — расходная плотность и 2 — высота точки относительно горизонтальной координатной плоскости) на входе и выходе постоянно [c.206]

    Осредненные значения местных скоростей в различных точках живого сечения могут быть различными. Они в свою очередь могут быть осреднены по живому сечению. Осреднение по сечению дает среднюю скорость потока о .р в данном сечении  [c.21]

    Снижение влияния степени неоднородности потока на эффективность разделения возможно двумя путями. Во-первых, это всемерное выравнивание поля скоростей газа установкой специальных перегородок, струйным управлением движением газа и другими способами. Такой подход, хотя и перспективен, имеет предельное ограничение, определяемое нулевой скоростью газа на поверхности зоны классификации. Во-вторых, это создание условий интенсивного поперечного перемешивания частиц и газа установкой различных местных сопротивлений — мера, прямо противоположная первому подходу. В таком случае осреднение параметров потока происходит не только формально, но и непосредственно в реальном классификаторе, в результате чего может быть достигнуто заметное повышение эффективности процесса по сравнению с тем же классификатором без поперечного перемешивания. Однако очевидно, что этот подход неизбежно связан с повышением аэродинамического сопротивления аппарата, что в ряде случаев не является приемлемым. [c.51]

    При отсутствии на трубопроводах стационарных водомеров расход сточных вод можно определять путем измерения местных осреднен-ных скоростей потоков с помощью переносных скоростных, переносных парциальных водомеров и напорных трубок [38, 39]. [c.392]

    Осредненная скорость — еред.ияя из местных скоростей в данной точке за достаточно большой промежуток времени. [c.8]

    Решение системы (1.20), (1.21) хорошо известно (см., например, [1.117]). В данном случае для получения окончательных результатов необходимо знать какой-либо характерный размер элементарного слоя (жо или <5о) и скорость Uq на его внешней границе. В [1.108, 1.115] эта дополнительная информация находится из сопоставления расчетного и опытного распределений осредненной скорости вблизи стенки. При этом расчетный профиль скорости й у) определяется как среднеинтегральное по длине xq значение местной скорости и у,х), являющейся решением системы (1.20), (1.21)  [c.84]

    Наиболее простой вариант теплового расчета — определение осредненной для всего гидропривода установившейся в течение многих циклов работы температуры Т жидкости. Такой расчет применим и достаточен, если в гидроприводе с разомкнутым потоком жидкости нет существенных по перепаду давления местных сопротивлений, приводящих к значительному местному нагреву жидкости. Можно также использовать простой вариант расчета для оценки теплового режима гидропривода с машинным регулированием скорости и замкнутым потоком жидкости. [c.122]

    В случае однородных жидкостей очень слабо зависит от числа Рейнольдса и практически определяется геометрией местного участка и структурой течения перед ним, поэтому форма подводящего канала имеет большое значение. Влияние местного участка на течение распространяется далеко вниз по потоку, поэтому, когда задаются числовые значения необходимо уточнять форму подводящего канала и положение конечного сечения местного участка, Осредненное полное давление можно практически измерить только в мало возмущенном потоке поэтому придется ограничиться рассмотрением местных участков, расположенных за длинным цилиндрическим каналом и на выходе соединенных с каналом, геометрическая форма которого обеспечивает квазиравномерное распределение скоростей в выходном сечении. [c.206]

    При изучении атмосферной диффузии, как отмечалось выше, обычно пользуются осредненными характеристиками турбулентности, концентрации примеси С и плотности ее отложений на земле g. Однако при мгновенном или движущемся непрерывном точечном источнике примеси местные значения g определяются не только средними, но и случайными кратковременными пульсациями скорости ветра I] и концентрации С. Поэтому наряду с определенными закономерностями для средних значений g в опытах наблюдаются местные флуктуации этой величины. [c.85]


    Приведенные выше оценки относятся к установившимся течениям газа и могут быть применены только к суммарным аэродинамическим параметрам вентиляторов, которые характеризуются осредненными по времени величинами скорости и давления. Для неустановившихся течений учет сжимаемости оказывается существенным при весьма малых средних скоростях движения среды. При распространении звуковых волн все основные эффекты связаны с колебательным движением частиц, местными пульсациями давления, которые в силу сжимаемости среды вызывают изменение ее плотности. Поэтому при определении акустических характеристик вентиляторов число М всегда будет существенным критерием [58]. [c.24]

    Измерения скоростей в различных точках потока чувствительными самопишущими приборами, ( апри-мер, термоанемометром с ос-циллографичеокой записью) обнаруживают пульсации скоростей—весьма быстрые и беспорядочные их колебания около некоторых средних значений (рис. 2-8, где изображены пульсации осевой скорости в определенной точке потока). Эти постоянные во времени значения называют осредненны-М И местными скоростя.ми. [c.90]

    Распространение уравнения Бернулли на установившийся погон. Рассмотрим живое сечение со установившегося потока (рис. 3-26), вблизи которого удовлетворяется условие медленной изменяемости движения. Возьмем в потоке элементарную струйку, пересекающую наше сечение в точке А с отметкой г, местной осредненной по времени скоростью о, давлением р. Пусть площадь сечения этой струйки в точке А будет со. Если удельная энергия этой струйки будет равна [c.54]

    Большая часть измерений, таким образом, проведена в области ядра постоянной скорости. Тем не менее вызывает сожаление отсутствие указания на принятый масштаб для турбулентной скорости. Было ли это осредненное текущее значение местной скорости или некоторая характерная постоянная скорость — неизвестно, поэтому какие бы то ни было заключения можно делать лишь об области ядра постоянной скорости. Здесь получен интересный на первый взгляд результат — зависимость интенсивности турбулентности в ядре от диаметра насадка. При одинаковой начальной скорости (40 м/сек) в сходственных сечениях большей струи интенсивность оказалась выше, причем примерно во столько же раз, во сколько диаметр большого сопла больше диаметра малого сопла. К сожалению, однако, конфузорность сопел была различной, большей у малого сопла. Это могло привести к указанному результату и при отсутствии влияния размера сопла. Таким образом, бесспорным остается лишь монотонный рост интенсивности в ядре, в направлении от устья. [c.29]

    В ранних работах [1.8-1.10] предполагалось, что в турбулентном пограничном слое вблизи обтекаемой поверхности (стенки) существует область невозмущенного ламинарного течения, в которой все процессы обмена носят чисто молекулярный характер. Однако уже в опытах 1.11, 1.12], где визуально исследовалось движение мелких взвешенных частиц в турбулентном потоке воды, было обнаружено, что в пределах этого ламинарного подслоя имеют место интенсивные пульсации продольной составляющей скорости, соизмеримые с величиной местной осредненной скорости потока. Это иллюстрируется на рис. 1.1, где приведены результаты измерений мгновенных значений скорости в области подслоя [1.13]. (Здесь = О/пт, у = уи /и где Пт = у/т /р — динамическая скорость). [c.9]

    На рис. 2.21а приведено расчетное распределение значений С/зам/ оо и С/уск/i/oo в сравнении с экспериментальным распределением осредненной скорости и/Uoo, представленным в виде сплошной линии, аппроксимирующей опытные точки на рис. 2.18 а. Видно, что распределение средней скорости в зонах замедленной и ускоренной жидкости подтверждает исходную схему течения (рис. 2.196), согласно которой профиль осредненной скорости U является результатом перемежаемости двух зон течения, имеющих разную среднюю скорость. При этом разность скоростей AU = i/уск — i/зам весьма значительна и достигает 50% от местной осредненной скорости U в окрестности у oj,. [c.129]

    Инвариантность автокорреляции R At) но глубине потока (рис. 2.7) для z h> 0,15 позволяет сделать вывод о том, что продольный пространственный макромасштаб турбулентности в основной толще потока пропорционален осредненной местной скорости течения. Аналогичный вывод сделал Е. М. Минский [100] на основе анализа экспериментальных данных. Постоянство автокорреляции R At) потока за пределами вязкого подслоя обнаруживается также по экспериментальным данным, полученным Лау-фером [180], Шубауэром и Клебановым [194], Ж. Конт-Белло и др. Инвариантность автокорреляции R At) по глубине потока позволяет получить более надежные данные по продольным макромасштабам турбулентности сопоставлением автокорреляций, осредненных по г/Л. Это повышает надежность и точность вычисления автокорреляционных функций вследствие использования более представительных статистик. [c.53]

    В прогрессивных аэродинамических схемах гравитационных классификаторов Зигзаг и с пересыпными полками (см. рис. 2.13, а, б), в которых осуществляется интенсивное поперечное движение материала, согласно [8] реализуется принципиально новый способ разделения. С этим нельзя согласиться по следующим причинам. Во-первых, определяющими силами классификации являются противоположно направленные силы тяжести и аэродинамического сопротивления частиц. Правда, последние имеют пульсационный характер, но осреднение их по врй 1ени и рабочему объему классификатора дает среднее значение силы, направленное именно вверх — противоположно силе тяжести. Во-вторых, о сохранении чисто гравитационной противоточной классификации свидетельствуют и опытные данные [8]. На рис. 4.12, где точки соответствуют опытным, показана зависимость граничного размера разделения в гравитационном классификаторе с пересыпными полками при разделении алюминиевой пудры (рц = 2700 кг/м ) от расходной скорости потока. На графике просматривается очевидная прямая пропорциональность величин брр и н , что полностью соответствует формуле (4.34). Таким образом, регулярные местные сопротивления в потоке приводят к выравниванию параметров газа и порошка по сечению аппарата, что заметно повьппает эффективность процесса и аэродинамическое сопротивление аппаратов. Разделение же не только сохраняется типично гравитационным, но в гораздо большей степени приближается в среднем к одномерному, так как снижается роль поперечных неоднородностей. [c.112]

    Мы будем иметь дело со статистически стационарными потоками. В этой связи по ходу изложения будут использоваться статистически средние ве тичины, простейшей формой которых является среднее по времени в фиксированной точке поля потока. В частности, применительно к измерениям полей скорости типичная задача обычно заключается в определении величины и направления местного вектора осредненной по времени скорости в каждой точке исследуемой области потока. В пространственном течении локальный вектор состоит из компонент скорости и, V, W ъ направлении осей х, у, z и каждую из них необходимо определять. Для дву- или одномерного поля потока задача упрощается до определения компонент и, V и соответственно U. В отличие от ламинарных течений в турбулентных потоках только осредненное по времени значение местной скорости сохраняется неизменным. Мгновенное (зависящее от времени) значение скорости i/(0, V t), W t) состоит из соответствующего среднего значения и наложенной на него пульсационной составляющей скорости, также зависящей от времени, и, [c.21]

    При турбулентном стабилизированном течении в трубах распределение местных осредненных скоростей описывается полуэм-пирическими или эмпирическими формулами. [c.31]

    В случае К. на пучке горизонтальных труб расход стекающего конденсата увеличивается сверху вниз вследствие натекания конденсата с вышележащих труб на нижележащие, а расход пара по пути его движения снижается. В пучке с постоянным или относительно немного уменьшающимся по высоте живым сечеиием между трубами скорость нисходящего потока пара постепенно снижается, а конденсат натекает с верх, труб на нижние. Вначале это приводит к уменьшению местных коэф. теплоотдачи (осредненных по периметру труб) при увеличении отсчитываемого сверху номера горизонтального ряда труб. Однако, начиная с нек-рого ряда, в результате натекания конденсата течение пленки возмущается и ее термич. сопротивление снижается. Благодаря этому коэф. теплоо дачи могут стабилизироваться, а при возрастающем воздействии возмущения течения пленки иа ниж. трубках - увеличиваться с возрастанием номера ряда. [c.450]

    Лопастная система насоса всегда состоит из двух систем решеток профилей, перемещающихся одна относительно другой. Вязкость жидкости является причиной образования за каждым обтекаемым профилем закромочного аэродинамического следа, распределение скоростей поперек которого обратно имеющему место в плоской турбулентной струе [32]. Входная кромка профиля второй решетки, расположенной за данной (первой), проходит в относительном движении через аэродинамические следы предыдущей решетки. На входной кромке профилей последующей решетки при прохождении ею одного шага предыдущей скорости будут изменяться по величине и направлению. Эта периодическая неравномерность вызывает на профиле местные изменения скорости и давления, которые распространяются вдоль профиля. Эти неравномерности имеют вихревую природу. Поэтому скорость их распространения вдоль профиля того же порядка, что и основная осредненная скорость обтекающего профиль потока. [c.272]

    Скорость потока и интенсивность турбулентности изменяются вдоль радиуса трубы и по высоте пламепи. Поэтому для точного сравнения экспериментальных данных с результатам теоретического расчета требуется измерение местных. значений скорости распространения турбулентного пламени. Величин, полученных путем осреднения по всей поверхности пламени, не достаточно для указанного сравнения. Местные значения скорости распрострапония турбулентного пламени определялись при помощи метода Гюи—Михельсопа из соотношения [c.290]

    Для проверки предложенной теории рассчитывалось турбулентное течение Куэтта в канале при отсутствии химических реакций [53, 57]. Необходимые для расчетов данные по скорости диссипации турбулентной энергии заимствовались из эксперимента. Полученные результаты удовлетворительно согласуются с результатами соответствующ,их экспериментов. Весьма интересные результаты были получены при анализе горения заранее непере-мешанных горючего и окислителя в турбулентном потоке со сдвигом и постоянным градиентом осредненной скорости (гомологичный поток) [56]. Прежде всего следует отметить очень хорошее качественное согласие с результатами эксперимента. Далее, в отличие от выводов феноменологических теорий горения, из результатов, полученных Чангом, следует, что ширина зоны пламени в пределе высоких значений числа Дамкелера (т. е. в пределе очень быстрых химических реакций) равна по порядку величины локальному интегральному масштабу турбулентности. Несколько неожиданным результатом является вывод, что перенос тепла в некоторых областях пламени может иметь место в направлении, противоположном направлению местного градиента средней температуры. [c.205]


Смотреть страницы где упоминается термин Осредненная местная скорость: [c.27]    [c.29]    [c.90]    [c.32]    [c.280]    [c.205]    [c.9]    [c.182]   
Справочник по гидравлическим расчетам (1950) -- [ c.13 ]




ПОИСК





Смотрите так же термины и статьи:

Скорость местная



© 2024 chem21.info Реклама на сайте