Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Хром электроосаждение

    Электроосаждение медных сплавов возможно при использовании сложных щелочных цианистых растворов в температурных пределах 30—90° С (в зависимости от используемого раствора). Латунные и бронзовые изделия могут получать покрытие при использовании анодов соответствующего состава сплавов, причем катодная производительность и состав электролитических осадков зависят от плотности тока, применяемого в процессе осаждения. Большинство осадков обладает довольно хорошим блеском, но выравнивание в основном плохое или отсутствует. Для декоративного использования стали применяют обычно тонкослойные осадки, без грунта или в сочетании с никелем в целях улучшения выравнивания. При этом обычно наносят лак, чтобы избежать потускнения под влиянием атмосферных воздействий. В некоторых случаях можно использовать декоративное хромовое покрытие, но осадки сплавов меди часто имеют высокие внутренние напряжения, что может привести к серьезному растрескиванию хрома. Электролитические осадки бронзы могут служить в качестве защитных грунтовых покры- [c.95]


    Алюминий используют для нанесения покрытия на сталь в расплавленном состоянии, так как точка плавления стали значительно выше точки плавления алюминия. На сплавы алюминия покрытие из чистого алюминия следует наносить путем металлизации или плакировки. Если в качестве покрытия используют хром, то при электроосаждении непосредственно на основной металл обычно получают покрытие с неравномерной защитой основного металла. Если основной металл — сталь, то на грунтовое никелевое покрытие наносят хромовое покрытие если основной металл — цинк, то на грунтовое медное покрытие наносят никелевое покрытие. На алюминий после химического цинкования наносят слои медного и никелевого покрытия. [c.126]

    В гальванопластике применяют гальванические процессы нанесения различных функциональных покрытий, например для придания поверхности износостойкости (хромирование, химическое никелирование, электроосаждение сплавов, содержащих фосфор, бор и др.), улучшения внешнего) вида (блестящее хромирование, никелирование, фосфатирование, нанесение черного иикеля, хрома и др.), улучшения паяемости (нанесение сплава никель—бор) и т. д. Оборудование для этих процессов подробно описано в книге [18]. [c.225]

    В таком случае наиболее полную картину кинетики электродного процесса дают I — т-кривые, полученные при постоянном потенциале. Преимущество этого метода особенно проявляется при электроосаждении металлов группы железа, хрома и в ряде других случаев, когда выделение металла на катоде сопровождается совместным разрядом водорода. [c.253]

    При электроосаждении хрома выделяется много водорода, пузырьки которого увлекают с собой в атмосферу часть электролита, распыляя его в виде тумана, поэтому необходимо, чтобы была обеспечена надежная защита рабочих от вредного действия хромовой кислоты. Для этого ванны снабжаются мощной бортовой вентиляцией. Большой интерес представляют холодные электролиты, агрессивность которых значительно меньше, чем горячих электролитов. Кроме того, выход металла по току в таких электролитах выше. [c.421]

    Опыт 2. Проследить процесс разрушения пленки, образующейся при электроосаждении хрома и состоящей из продуктов восстановления СгОз, путем визуального наблюдения поверхности образцов под микроскопом. [c.48]

    Методы измерения pH в приэлектродных слоях были широко использованы при электроосаждении хрома, железа и других металлов для определения характера электродных реакций. Таким образом были установлены причины пассивирования растущих кристаллов гидратными пленками. [c.267]


    Существует весьма тесная связь между структурой и внутренними напряжениями в электролитических осадках. Многие электролитические осадки характеризуются наличием значительных внутренних напряжений, которые могут быть вызваны различными причинами искажением параметров кристаллической решетки или изменением расстояний между кристаллами осадка в процессе осаждения, укрупнением кристаллов осадка вследствие слияния мелких кристаллов и другими. Для большинства металлов наблюдаются внутренние напряжения растяжения, а для некоторых — напряжения сжатия. Так, при электроосаждении хрома, никеля, кобальта, железа, палладия и меди возникают преимущественно напряжения растяжения, тогда как при осаждении цинка, кадмия и свинца — внутренние напряжения сжатия. [c.139]

    Для хрома н вольфрама характерен полиморфизм помимо объемно центрированной решетки (а-форма) эти металлы при особых условиях электроосаждения на катоде приобретают гексагональную решетку плотной упаковки (р-форма), но она неустойчива и необратимо переходит в а-форму. [c.343]

    Выяснение механизма электроосаждения хрома из его шестивалентных соединений представляет собой одну из сложнейших задач электрохимии. [c.314]

    Лужение медных сплавов погружением в растворы солей, содержащих двухвалентное олово, применяется при пайке. Цинк осаждается на алюминии погружением в горячие, щелочные, цинкатные растворы в целях получения тонкого покрытия как основы для последующего электроосаждения других металлов, в основном меди, никеля и хрома. В результате химического осаждения можно получить чисто декоративные оловянные и серебряные покрытия. [c.83]

Рис. 3.8. Микротрещины при электроосаждении хрома (ХЮОО) Рис. 3.8. Микротрещины при <a href="/info/66790">электроосаждении хрома</a> (ХЮОО)
    Так же, как при электроосаждении хрома, тонкослойные покрытия золотом склонны к образованию пор, которые могут неблагоприятно влиять на их свойства коррозионной защиты основного металла. Для уменьшения пористости требуется производить тщательный контроль за условиями электроосаждения, а также уделять большое внимание качеству подготовки основного металла перед нанесением покрытия. С целью усиления защиты основного металла можно использовать тонкие слои грунтового покрытия. [c.96]

    При некоторых процессах электроосаждения в ванне смешиваются мельчайшие инертные нерастворимые частицы во взвешенном состоянии, что позволяет получить матовые или сатинированные осадки никеля. При изменении состава ванны получают блестящее покрытие за счет ограничения осаждения блестящего осадка никеля до 1—2 мкм. Тонкослойное покрытие хрома, осажденное по всему видоизмененному слою, содержит большое количество микропор (более 10 ООО на 1 см ), поскольку хром не осаждается на поверхности отдельных диэлектрических частиц. Сопротивление действию коррозии такого покрытия, называемого микропористым хромом, значительно возрастает. [c.97]

    Никель. В морской атмосфере скорость коррозии никеля обычно не превышает 0,25 мкм/год [39, 41]. В основном никель используется не как конструкционный материал, а в качестве покрытия, получаемого, например, электролитическим способом. Специально разработанные многослойные покрытия, получаемые электроосаждением меди, никеля и хрома, обеспечивают экономичную и долговечную защиту отливок из стали или сплавов на основе цинка в морских атмосферах. [c.76]

    Основным компонентом электролитов для осаждения хрома является оксид хрома(VI) (хромовый ангидрид). Однако при электролизе раствора СгОа хром не выделяется, образуются продукты неполного восстановления шестивалентного хрома в виде тонкой радужной пленки и выделяется водород. Электроосаждение хрома в виде металла возможно только в присутствии посторонних (каталитических) анионов, например ЗО , [c.45]

    Исследования, проведенные в уксуснокислом буфере [163], показали, что ванадий выделяется на платиновом катоде вслед за ураном, и количественное осаждение ванадия происходит лишь при малых его содержаниях. Для полного удержания ванадия (содержание и 1,2мг, и 15) в растворе успешно использовался комплексон III. В процессе электролиза ванадий, восстановленный до V (IV), связывали в прочный комплекс с комплексоном III, и он не выделялся на катоде (найдено 1,13—1,16 мг У). Электроосаждение урана (1—2 мг) происходит на 95—98% [9] в присутствии того же комплексообразующего вещества из растворов, содержащих алюминий (11 А1 1 100), хром (11 Сг 1 10), кобальт (и Со>1 25) и никель (и Ы] 1 50). [c.342]


    ЭЛЕКТРООСАЖДЕНИЕ МЕТАЛЛОВ ПОДГРУППЫ ХРОМА [c.63]

    Наводороживание при хромировании, В процессе электроосаждения хрома происходит наводороживание покрытия и основ-пого металла. Поэтому важно оценить влияние режимов хромирования на содержание водорода в стали и хроме. [c.49]

    Для проверки этого предположения были поставлены опыты по определению скорости химического растворения образцов хрома, электроосажденных при различных температурах. Такие образцы, как известно, обладают резко отличающейся друг от друга сеткой трещин. Растворение производилось в 5%-ном растворе соляной кислоты при 35° в течение 10 мин. Испытанию подвергались образцы, хромированные при температуре электролита в пределах от 50 до 90°. [c.184]

    Для проверки этого предположения были поставлены опыты по определению скорости химического растворения образцов хрома, электроосажденных при различных температурах. Такие образцы, как известно, обладают резко отличающейся друг от друга сеткой трещин. Растворение производилось в 5%-ном растворе соляной кисло- [c.184]

    Никель чувствителен к агрессивным воздействиям, особенно в промышленной атмосфере. Из-за потускнения металла ве дедст-вие образования пленки основного сульфата никеля, уменьшающего зеркальный блеск поверхности, покрытия постепенно теряют отражательную способность [4]. Для того чтобы уменьшить потускнение, на никель электроосаждением наносят очень тонкий (0,0003—0,0008 мм) слой хрома. Отсюда возник термин хромовое покрытие , хотя в действительности оно в основном состоит из никеля. Оптимальные условия защиты достигаются, если в покровном хромовом слое образуются микротрещины. Чтобы получить этот эффект, в гальванически,е ванны для электроосаждения хрома вводят соответствующие добавки. Тонкий никелевый слой, осажденный из электролита, содержащего блескообразователи (обычно соединения серы), в свою очередь наносится на вдвое или втрое более толстый матовый слой, электроосажденный из обычной ванны никелирования. Многочисленные трещины в хроме способствуют инициации коррозии во многих местах поверхности, что уменьшает в конечном итоге глубину коррозионных разрушений, которые в противном случае протекали бы в нескольких отдельных точках. Блестянщй никель, содержащий небольшие количества серы, является анодом по отношению к нижнему слою никеля, в котором серы меньше, и поэтому выступает в качестве протекторного покрытия. Развитие любого питтинга, образующегося под хромовым покрытием, происходит в основном вширь, а не за счет роста в глубь никелевых слоев. Таким образом, предотвращается коррозия основного металла. Система многослойных покрытий обладает более высокой защитной способностью, чем однослойные хромовые или никелевые покрытия той же толщины [51. [c.234]

    Электроосаждение хрома из раствора хромовой кислоты является одним из наиболее сложных процессов в гальваностегии. Он имеет ряд отличительных особенностей по сравнению с выде- [c.414]

    Другим интересным применением электролиза является покрытие металлов. Если, например, в только что описашюй электролитической ячейке вместо меди сделать катодом какой-либо другой металл, в процессе электролиза на нем будет образовываться медное покрытие. Покрытие одного металла другим в электролитической ячейке называется электропокрытием (электроосаждением). Предмет, на который хотят нанести покрытие, делают катодом в электролитической ячейке. Металл, который наносят на. яругие поверхности, делают анодом, как показано на рис. 19.14. Электропокрытие защищает различные предметы от коррозии и улучшает их внешний вид. Многие наружные части автомобилей, например бамперы и дверные ручки, электролитически покрывают хромом. [c.227]

    Электроосажденне хрома из хромовокислого раствора широко применяется для получения хромовых покрытий. Теория этого процесса подробно изложена в разделе гальванотехники (стр. 191). [c.107]

    Электроосажденные металлы по-разному поглощают водород. Так, хром содержит около 0,45 вес. % водорода, железо, никель, кобальт до 0,1 вес. %, цинк 0,01—0,001 вес. % некоторые металлы не поглощают водород (свинец, ртуть). [c.134]

    Блестящие. осадки хрома характеризуются густой сеткой трещин и пор (рис. 80 и 81). Молочные осадки не имеют трещин. Предполагается, что, в этих условиях при электроосаждении образуются сразу кристаллы хрома кубической формы. Вследствие высокой твердости хромовых покрытий механическая глянцовка матовых осадков затруднительна, и для защитно-декоративных целей предпочитают получать блестящие осадки непосредственно из электролита. [c.196]

    Благодаря использованию ценных свойств индивидуальных металлов покрытиям можно приданать путем совместного электроосаждения металлов в виде сплавов разнообразные свойства. В виде сплавов можно получать элеьтролитические покрытия металлами, которые не выделяются из водных растворов на катоде, как например, вольфрам, молибден, рений и др. Таким способом получают жаростойкие покрытия сплавами вольфрам — железо, вольфрам — никель, вольфрам — кобальт, вольфрам — хром, молибден — никель и др. [c.234]

    Электроосаждение хрома почти всегда производят из растворов серной или хромовой кислот с использованием анодов из свинца. Рабочая температура меняется в пределах 37—65° С в зависимости от используемого электролита для нанесения гальванических покрытий. Хром периодически пополняют, заменяя использованный, за счет добавок хромовой кислоты. Покрытия блестящие, но рассеивающая способность слабая, что приводит к неравномерности покрытия по толщине и неполному заполнению углублений обрабатываемых изделий. Кроме того, КПД катода низкий (в пределах 8—18% в зависимости от используемого раствора и рабочих условий). Более высокий КПД катода можно получить в ваннах, катализуемых фторидом кремния (до 25%), или в ваннах (типа Борнхаузера) тетрахромата (до 30%). [c.92]

    Толщина обычных декоративных электроосаждаемых осадков обычно составляет около 0,3 мкм. Если эти осадки используются с подслоями никеля соответствующей толщины и качества, то основной металл (сталь, цинковые сплавы или медь) можно полностью защитить от внешнего воздействия на протяжении от шести недель до шести месяцев. После образования маленьких язв или пузырей, содержащих продукты коррозии основного металла, декоративные внешние качества изделия теряются, хотя функциональные качества могут оставаться неизменными еще более длительный период времени. Можно немного улучшить качества за счет нанесения плотных молочных осадков (см. гл. 3), но в этом случае сопутствующим недостатком явится чрезмерная хрупкость. Если же использовать осадки хрома, имеющие микронесплошности (такие, как микротрещины или микропоры) при толщине покрытия 0,3—1,0 мкм, создаваемого электроосаждением (см. гл. 3), то снижение плотности локального анодного тока замедлит проникающую коррозию в защитных подслоях никелевого покрытия, и срок службы полностью сохраненной декоративной поверхности может составить от одного года до пяти лет. Даже по истечении этого времени потеря внешнего вида часто связана не с коррозией основного металла, а с мельчайшим отслаиванием хрома от никеля в результате поверхностной коррозии никеля, вследствие чего поверхность хрома становится матовой. [c.112]

    В морских атмосферах скорость коррозии кобальта очень мала. На обоих испытательных стендах в Кюр-Бич (25 и 250 м от океана) коррозия происходила со скоростью от 2,5 до 5,1 мкм/год [46]. Электроосажден-ное кобальтовое покрытие может разрушаться быстрее, чем никелевое. Наличие продуктов коррозии кобальта придает поверхности красноватый оттенок. Сравнение свойств композиционных покрытий на стали, полученных электроосаждением хрома на нижний слой из кобальта, кобальтоникелевого сплава или никеля, показало, что во всех случаях достигается примерно одинаковая защита стали в морских атмосферах [47]. В целом кобальт можно отнести к металлам, стойким в морской атмосфере. Небольшая местная коррозия, как и в случае никеля, может происходить в результате образования коррозионных пар под солевыми и другими отложениями на поверхности. [c.91]

    В виде электроосажденного покрытия на никелевом подслое хром обеспечивает хорошую защиту таких металлов, как сталь, латунь и литейные сплавы на основе цинка в морских атмосферах [46]. [c.162]

    Электроосажденные никель, кобальт, железо, медь и хром наряду с водородом содержат и другие газы (см /г)  [c.277]

    Электроосаждение железа с хромом представляет значительный практический интерес, так как при повышенной жаро- и коррозионной стойкости оседков существенно возрастает скорость пр01 сса злектроосаждения, в частности хрома [485]. [c.168]

    Из элементов щестой группы электроосаждением из неводных растворов получены в элементарном состоянии селен и теллур, предприняты многочисленные попытки по электровыделению металлов и сплавов подгруппы хрома. Систематическое изучение электрохимии селена и теллура, в частности электролиза их соединений в органических растворителях, началось в 50—60-х годах нашего века в связи о интенсивным использованием их в полупроводниковой технике. Показана возможность электролитического получения селена и теллура из растворов в спиртах, кислотах, смесях спиртов с бензолом и его производными. [c.161]

    Электролитическое выделение хрома из водных растворов тщательно изучено и щироко используется для получения разнообразных гальванопокрытий на других металлах. Преимущества его электроосаждення нз неводных сред заключается прежде всего в увеличении скорости процесса (например, скорость осаждения хрома в ДМФ в 6 раз выще, чем в стандартных водных электролитах), а также часто в улучшении кроющей и рассеивающей способности. Наилучщие результаты достигаются в случае растворов солей трехвалентного хрома в диполярных апротонных растворителях в смесях с водой. Количество воды варьируется в весьма широких пределах. Для улучшения качества осадка н увеличения выхода по току в электролит добавляют различные буферирую-щие и комплексообразующие вещества. Для получения хороших осадков без трещин плотность тока должна быть 5—15 А/дм [641, 668, 669, 736]. [c.162]

    Сведения об электровыделении из неводных сред остальных металлов подгруппы хрома противоречивы. Исследования по электроосаждению этих металлов многочисленны, особенно в случае вольфрама. Однако в основном получены отрицательные результаты. По А. Бреннеру [700—702, 704], металлы неводной группы по критерию невозможности их электроосаждення из водных растворов подразделяются на два класса металлы, которые не могут быть осаждены из водных растворов, поскольку потенциалы их выделения слишком отрицательны металлы, имеющие потенциалы электровыделения, теоретически достижимые в водных растворах, но ионы которых не реагируют (не активны) на катоде. Металлы первого класса (например, щелочные) довольно легко могут быть осаждены из растворителей, содержащих ион водорода, менее подвижный, чем у воды. [c.163]


Смотреть страницы где упоминается термин Хром электроосаждение: [c.621]    [c.109]    [c.314]    [c.130]    [c.148]    [c.202]    [c.128]    [c.128]   
Введение в электрохимию (1951) -- [ c.629 ]




ПОИСК





Смотрите так же термины и статьи:

Баграмян и Д. Н. Усачев. Исследование механизма электроосаждения хрома методом меченых атомов

Баграмян, Д. Н. Усачев и Г. И. Червова Поляризация катода при электроосаждении хрома

Ваграмян и Д. Н. Усачев. Исследование механизма электроосаждения хрома методом меченых атомов

Ваграмян, Д. Н. Усачев и Г. И. Червова Поляризация катода при электроосаждении хрома

Изучение механизма электроосаждения хрома методом радиоактивных индикаторов

Карнаев, В. П. Артамонов, А. И. Левин Электроосаждение хрома из расплавленного дихлорида хрома

О роли постороннего аниона в процессе электроосаждения хрома

Червова и А. Т. Баграмян. Распределение металла на электроде при электроосаждении хрома

Червова и А. Т. Ваграмян. Распределение металла на электроде при электроосаждении хрома

Электроосаждение

Электроосаждение металлов на титан и его сплавы, а также на хром, молибден, вольфрам и нержавеющую сталь

Электроосаждение металлов подгруппы хрома

Электроосаждение металлов хрома

Электроосаждение покрытий на легкие металлы, хром, молибден, вольфрам и нержавеющую сталь



© 2025 chem21.info Реклама на сайте