Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Амилаза поджелудочного сока

    Амилаза поджелудочного сока завершает гидролиз как сырого крахмала, так и вареного до мальтозы. Три карбогидразы панкреатического сока — мальтаза, лактаза и сахараза—расщепляют дисахариды. Следовательно, конечными продуктами переваривания углеводов являются фруктоза, галактоза и глюкоза. [c.371]

    ПЕРЕВАРИВАНИЕ КРАХМАЛА АМИЛАЗОЙ ПОДЖЕЛУДОЧНОГО СОКА [c.137]

    Поджелудочная железа относится к железам со смешанной секрецией. Внешнесекреторная функция ее заключается в синтезе ряда ключевых ферментов пищеварения, в частности амилазы, липазы, трипсина, химотрипсина, карбоксипептидазы и др., поступающих в кишечник с соком поджелудочной железы. Внутрисекреторную функцию выполняют, как было установлено в 1902 г. Л.В. Соболевым, панкреатические островки (островки Лангерганса), состоящие из клеток разного типа и вырабатывающие гормоны, как правило, противоположного действия. Так, а- (или А-) клетки продуцируют глюкагон, 3- (или В-) клетки синтезируют инсулин, б-(или В-) клетки вырабатывают соматостатин и Р-клетки —малоизученный панкреатический полипептид. Далее будут рассмотрены инсулин и глюкагон как гормоны, имеющие исключительно важное значение для жизнедеятельности организма .  [c.267]


    Переваривание пищевых углеводов начинается в ротовой полости. Под действием фермента слюны амилазы крахмал и гликоген подвергаются неглубокому расщеплению с образованием низкомолекулярных полисахарвдов - декстринов. Дальнейщий распад декстринов, а также нерасщепленного крахмала и глшсогена протекает в тонкой кишке с участием амилазы поджелудочного сока. В результате образуется дисахарид мальтоза, состоящая из двух остатков глюкозы. Завершается переваривание углеводов превращением образовавшейся мальтозы и других пищевых дисахаридов (сахароза, лактоза) в моносахариды (глюкоза, фруктоза, галактоза), главным из которых является глюкоза. [c.44]

    В двенадцатиперстной кишке переваривание углеводов вновь возобновляется под действием ферментов панкреатического сока — амилазы и а-глюкозидазы (мальтазы). Сок поджелудочной железы имеет щелочную реакцию и нейтрализует попадающую из желудка соляную кислоту, а образующийся при этом хлористый натрий активирует действие амилазы. Расщепление дисахаридов — мальтозы, сахарозы и лактозы происходит в тонком кишечнике при участии ферментов а-глюкозидазы (мальтазы), 3-фруктофуранозидазы (сахаразы) и р-галактозидазы(лактазы), выделяемых слизистой оболочкой кишечника. [c.157]

    Благодаря недолгому пребыванию пищи в ротовой полости лишь незначительная часть углеводов подвергается в ней расщеплению. Как только пища попадает в желудок и смешивается с кислым желудочным соком, действие ферментов слюны прекращается. В желудочном соке отсутствуют ферменты, действующие на углеводы, поэтому переваривание углеводов возобновляется только после их попадания в двенадцатиперстную кишку. Здесь углеводы подвергаются воздействию сока поджелудочной железы, который содержит ферменты — амилазу и мальтазу. Под влиянием ферментов поджелудочного сока крахмал расщепляется до глюкозы. [c.184]

    Крахмал и гликоген расщепляются в 12-перстной кишке под действием амилазы поджелудочного сока. В результате образуется мальтоза, расщепляемая затем мальтазой (а-глюкозидазой) до глюкозы. [c.161]

    Крахмал и некоторые другие полисахариды, попадающие в кишечный тракт с пищей, не успевают полностью расщепиться под действием амилазы слюны в полости рта и в желудке, где амилаза слюны некоторое время продолжает действовать (желудочный сок не содержит амилазы). Гидролиз полисахаридов в основном происходит в двенадцатиперстной кишке под действием амилазы поджелудочного сока. Получающаяся при этом мальтоза, наряду с другими дисахаридами, переваривается затем до моносахаридов под действием кишечного сока. [c.137]


    Наиболее важная фаза осахаривания крахмала и гликогена протекает в двенадцатиперстной кишке под действием амилазы поджелудочного сока. Именно в двенадцатиперстной кишке после нейтрализации соляной кислоты, поступившей из желудка, бикарбонатами поджелудочного сока создаются условия для полного расщепления полисахаридов. [c.254]

    Выделение трипсина в недеятельной форме имеет большое биологическое значение. Поджелудочный сок содержит ряд других ферментов, например липазу и амилазу, представляюш,их собой, как и все ферменты, белковые тела. Присутствие в одном с ними растворе мощного протеолитического фермента — трипсина — в активной форме могло бы привести к их перевариванию и разрушению еще в панкреатической железе. Активность амилазы, липазы и других ферментов и сохраняется благодаря тому, что трипсин выделяется в виде неактивного трипсиногена. [c.315]

    Амилазы встречаются везде, где имеется крахмал, например, в картофеле, муке злаков, бобах сои, в печени, поджелудочном соке, слюне, крови, моче [c.791]

    В желудке расщепление углеводов пищи не происходит, так как отсутствуют специфические ферменты гидролиза углеводов, а кислая среда желудочного сока (pH 1,5—2,5) подавляет активность ферментов слюны. В тонком кишечнике происходит основной распад углеводов пищи. В двенадцатиперстной кишке под действием фермента амилазы сока поджелудочной железы сложные углеводы постепенно расщепляются до дисахаридов. Далее дисахариды под действием высокоспецифических ферментов мальтазы, сахаразы и лактазы расщепляются до моносахаридов, в основном глюкозы, фруктозы, галактозы. Эти ферменты находятся на щеточной кайме эпителия слизистой оболочки кишечника, поэтому распад углеводов происходит не только в полости кишечника, но и на мембранах клеток слизистой оболочки. [c.164]

    А.Я.Данилевский использовал для отделения трипсина от амилазы панкреатического сока метод адсорбции на коллодии. Это был интересный и перспективный прием, но эти замечательные исследования не были продолжены, как писал Дж,Б.С,Холдейн (И). Для получения чистого трипсина Данилевский измельчал поджелудочную железу собаки в ступке с песком и водой. Полученный фильтрат он насыщал магнезией и удалял осадок. В фильтрате оставалась панкреатическая амилаза и трипсин, которые Данилевский разделяя взбалтыванием со смесью спирта и эфира с растворенным в ней коллодием. Коллодий адсорбировал трипсин, а амилаза оставалась в растворе. Данилевский таким образом получил почти полностью очищенный от примесных белков трипсин. Диализируя остаточный раствор амилазы, он показал ее коллоидальную природу (15). [c.119]

    При легкой степени интоксикации повышение активности амилазы поджелудочной железы следует, по-видимому, рассматривать как рефлекторный акт такого же характера, как это наблюдается со стороны слюнных и желудочных желез. Однако дальнейшее более длительное повышение активности амилазы крови может быть связано также с деструктивными (склеротическими) изменениями в самой поджелудочной железе, в частности вокруг выводных протоков, затрудняющих отток панкреатического сока в двенадцатиперстную кишку. Наряду с этим не исключено, что повышение активности амилазы крови связано и с нарушением функции печени. [c.104]

    Ферментативный гидролиз крахмала. Ферментативный гидролиз крахмала протекает под влиянием ферментов амилаз, которые содержатся в слюне, соке поджелудочной железы, крови, печени, мозге. Источниками амилаз в промышленности служат проросшие зерна злаков (солод) II культуры п.чсснейых 1-рибон. [c.113]

    Амилазы широко распространены в природе. Как правило, они возникают повсюду, где находится крахмал, например в картофеле, в муке злаков, в бобах сои и т. д. Амилазы встречаются также в животных тканях и жидкостях, нанример в печени, соке поджелудочной железы, слюне, крови и моче. [c.317]

    Углеводный обмен — сложная система биосинтеза и распада углеводов в живых организмах, неотъемлемая часть обмена веществ. Начальный этап углеводного обмена автотрофных организмов — биосинтез моносахаридов (у растений — в результате фотосинтеза, у микроорганизмов — хемосинтеза), и их превращение в полисахариды. В организм человека и животных углеводы попадают с пищей. Под действием ферментов слюны сложные углеводы (например, крахмал, гликоген) частично распадаются на декстрины и мальтозу, в небольших количествах на глюкозу. Превращение их в желудке тормозится понижением pH среды до 1,5—1,8. Углеводы перевариванэтся в основном в двенадцатиперстной кишке и тонком кишечнике под действием ферментов поджелудочной железы и кишечного сока. Под действием а-амилазы поджелудочной железы крахмал и декстрины превращаются До мальтозы, которая под действием мальтазы расщепляется до двух молекул глюкозы. р-Галактозидаза (лактаза) кишечного сока расщепляет лактозу на глюкозу и галактозу, а под действием р-фруктозидазы (сахаразы) образуется глюкоза и фруктоза. [c.208]


    Химическая индивидуальность поверхности может также играть известную роль. Как было установлено Адамсом и Холмсом , наряду с общей тенденцией адсорбировать катионы благодаря своим кислотным свойствам, синтетические смолы, получаемые из разных фенолов, обнаруживают индивидуальные различия. Что касается смол, получаемых из ароматических оснований, то они адсорбируют преимущественно анионы. Эти адсорбционные свойства имеют важные технические применения, например, при очистке воды. Различия в адсорбционной способности разнообразных твёрдых тел дают ценное средство разделения смесей, как сложных органических соединений, так и неорганических ионов. Эти различия успешно используются для выделения веществ, имеющих большое значения в биохимии, в особенности энзимов и пигментов. Использование для этой цели адсорбентов имеет большую давность. В 1862 г. Данилевский выделил амилазу из трипсина, сока поджелудочной железы, путём адсорбции на свеже-осаждённом коллодии. В более позднее время гидроокиси железа и алюминия, а также каолин и древесный уголь весьма успешно при- [c.188]

    Иван Петрович Павлов уделял большое внимание изучению ферментов. Он рассматривал вопросы о тождестве пепсина и химозина о своеобразии действия липазы, а также амилазы и особенно трипсина поджелудочной железы изучал ферменты кишечного сока и пытался оценить химическую природу ферментов, исходя из предположения об их белковом характере. Следует заметить, что эту мысль впервые (1862) высказал наш биохимик [c.335]

    Амилоза хорошо растворяется в воде, тогда как амилопектин не растворяется и образует коллоидный раствор — клейстер. При частичном разрушении структуры крахмала образуются соединения с меньшей молекулярной массой (декстрины), которые также хорошо растворяются в воде. Основными ферментами, расщепляющими крахмал пищи, являются амилазы слюны и сока поджелудочной железы. [c.159]

    С середины XVIII в. начинается период открытия и вьщеления большого числа новых органических веществ растительного и животного происхождения. Крупным событием второй половины XVIII в. стали исследования Л. Спалланцани по физиологии пищеварения, которые положили начало изучению ферментов пищеварительных соков. Русский химик К.С. Кирхгоф в 1814 г. описал ферментативный процесс осахаривания крахмала под влиянием вытяжки из проросших семян ячменя. К середине XIX в. были найдены и другие ферменты амилаза слюны, пепсин желудочного сока, трипсин сока поджелудочной железы. Й. Берцелиус ввел в химию понятие о катализе и катализаторах, к числу последних были отнесены все известные в то время ферменты. В 1839 г. Ю. Либих выяснил, что в состав пищи входят белки, жиры и углеводы, являющиеся главными составными частями животных и растительных организмов. [c.16]

    Желудочный сок не содержит ферментов, расщепляющих сложные углеводы. В желудке действие а-амилазы слюны прекращается, так как желудочное содержимое имеет резко кислую реакцию (pH 1,5—2,5). Однако в более глубоких слоях пищевого комка, куда не сразу проникает желудочный сок, действие амилазы некоторое время продолжается и происходит расщепление полисахаридов с образованием декстринов и мальтозы. Наиболее важная фаза распада крахмала (и гликогена) протекает в двенадцатиперстной кишке под действием а-амилазы поджелудочного сока. Здесь pH возрастает приблизительно до нейтральных значений, при этих условиях а-амилаза панкреатического сока обладает почти максимальной активностью. Этот фермент завершает превращение крахмала и гликогена в мальтозу, начатое амилазой слюны. Напомним, что в молекулах амилопектина и гликогена в точках ветвления существуют также а(1—>6)-глико-зидные связи. Эти связи в кишечнике гидролизуются особыми ферментами амило-1,6-глюкозидазой и олиго-1,6-глюкозидазой (терминальная декстри-наза). [c.320]

    Наиболее важная фаза осахаривания крахмала и гликогена протекает в двенадцатиперстной кишке под действием амилазы поджелудочного сока. Именно в двенадцатиперстной киписе после нейтрали- [c.241]

    Кроме поджелудочного сока, в переваривании углеводов принимает участие и кишечный сок, содержащий амилазу, мальтаз у, са-харазу и лактазу, катализирующие гидролитическое расщепление соответствующих углеводов. Мальтаза, например, расщепляет мальтозу на две молекулы глюкозы. Сахароза гидролизуется сахаразой, которая впервые была обнаружена в кишечном соке В. В. Пашутиным. Под влиянием сахаразы из сахарозы образуются глюкоза и фруктоза лактоза, попадающая в пищеварительные органы с молоком, под действием лактазы превращается в смесь глюкозы и галактозы. [c.242]

    Ферменты, находящиеся в плазме или сыворотке крови, могут быть либо собственными ферментами плазмы, либо ферментами, попадающими в кровь из других органов, тканей или секретов. К числу первых относятся ферменты, принимающие участие в процессах свертывания крови, такие, например, как протромбин, проакцелерин, проконвертин и другие (стр. 467), неспецифическая холинэстераза крови и т. д. К числу вторых принадлежат амилаза, липаза и другие ферменты, поступающие в кровь в результате всасывания различных секретов — слюны, поджелудочного сока и т.д. сюда же относятся ферменты, попадающие в кровь из различных органов и тканей в результате разрушения в них части клеток или изменения проницаемости поверхностных клеточных мембран. Последняя группа гипер-ферментемий представляет особый интерес для клиники, так как по появлению в плазме крови ряда тканевых ферментов в необычных количествах можно судить о функциональном состоянии и заболевании различных органов (например, печени, сердечной и скелетной мускулатуры и т. д.). [c.478]

    В своей диссертации О специфически действуюших телах натурального и искусственного соков поджелудочной железы (12), в которой им впервые было описано применение метода адсорбции для выделения и очистки ферментов панкреатического сока, он выразил наиболее распространенную в те годы среди ученых,исследовавших природу ферментов, точку зрения. В выводах он писал Натуральный и искусственный поджелудочные соки обнаруживают вне организма, нормальным образом, три специфические физиологические реакции а) они превращают крахмал в сахар б) растворяют характерным образом створоженное белковое тело (фибрин) в) разлагают нейтральные жиры (на соответствующие жирную кислоту и глицерин). Каждая из этих реакций зависит от особенного специфического вещества (12, стр.61). В данном случае речь идет об амилазе, трипсине и липазе сока поджелудочной железы. Относительно их химической природы Данилевский делает вывод Оба специфические тела, [c.124]

    Ферменты, обладающие амилазным действием, широко распространены в природе. Они находятся в зернах злаковых растений, клубнях картофеля, в печени, выделениях поджелудочной железы, слюне. С помощью амилаз крахмал подвергается в растительных и животных организмах превращению в растворимые углеводы — мальтозу и глюкозу, которые соками растений или кровью животных доставляются к местам потребления и при своем сгорании дают организму необходимую энергию. [c.310]

    Поджелудочная железа выделяет свой секрет в двенадцатиперстную кишку в количестве от 0,5 до л з сутки. Сок поджелудочной железы, полученный по методу Павлова, представляет прозрачную жидкость щелочной реакции pH 7,3—8,7. Сок содержит ферменты, действующие на углеводы, амилазу и а-глюкозидазу, на жиры — липазу, на фосфатиды — фосфолипазы, на белки — трипсиноген, химотрипсиноген и панкреатоиептидазу, на полипептиды — карбоксипеп-тидазы и на нуклеиновые кислоты — дезоксирибонуклеазу и [c.190]

    Как было показагю впервые И. П. Павловым и его школой, ряд ферментов пищеварительных соков выделяется также в неактивной или малоактивной форме. На основании этих работ возникло представление о неактивной форме ферментов. Неактивная форма ферментов носит название профермента, или 3 и м о г е н а. Механизм превращения проферментов в активные ферменты может быть различным. Во многих случаях он сводится к разрушению присутствующего в проферменте парализатора, препятствующего проявлению действия фермента. По-видимому, именно таков механизм активирования профермента поджелудочной железы — трипсиногена - ферментом кишечного сока — энтерокиназой (стр. 314). К чему сводится активирующее действие ряда простых химических соединений — сказать часто трудно. Как бы то ни было, с этим действием необходимо считаться. Активность слюнной амилазы (фермента, осахаривающего крахмал) сильно повышается, например, в присутствии хлористого натрия. Соляная кислота активирует действие пепсина (фермента желудочного сока) и тем стимулирует автокаталитическое превращение профермента пепсиногена в пепсин. Липаза (фермент, расщепляющий жиры) активируется желчными кислотами, входящими в состав желчи, и т. д. Тканевые протеазы катепсины, растительная протеаза папаин, фермент аргиназа и некоторые другие сильно активируются так называемыми сульфгидрильными соединениями, содержащими SH-rpynny (цистеин, глютатион, сероводород), а также аскорбиновой кислотой. Все эти соединения обладают выраженными восстанавливающими свойствами. Таким образом, можно думать, что некоторые ферменты обнаруживают максимальную активность в восстановленной форме. [c.119]

    Теперь мы знаем, что при обмене веществ кровь играет важнейшую роль транспортного средства. Перенос газов, удаление чужеродных веществ, заживление ран, транспортировка питательных веществ, продуктов обмена, ферментов и гормонов являются главными функциями крови. Вся пища, которую человек съедает, подвергается в желудке и кишечни е химической переработке. Эти превращения осуществляются под действием особых пищеварительных соков — слюны, желудочного сока, желчи, поджелудочного и кишечного сока. Активным началом пищеварительных соков являются, главным образом, биологические катализаторы — так называемые ферменты, или энзимы. Например, ферменты пепсин, трипсин и эрепсин, а также сычужный фермент химозин, действуя на белки, расщепляют их на простейшие фрагменты — аминокислоты, из которых организм может строить свои собственные белки. Ферменты амилаза, мальтаза, лактаза и целлюлоза участвуют в расщеплении углеводов, тогда как желчь и ферменты группы липаз способствуют перевариванию жиров. [c.271]

    Исследования, выполненные в совершенно различных направлениях, пролили свет на другую важную роль ацетилхолина. Хо-кин Л. и Хокин М. [41—43, 461 исследовали удивительное действие, которое оказывают очень низкие концентрации ацетилхолина (IQ-s М) на продукты секреторных тканей, например на муцин и амилазу слюнных желез, на адреналин мозгового слоя надпочечника и на сок поджелудочной железы. Во всех этих случаях ацетилхолин значительно повышал секрецию изолированных желез или их срезов. Эти эффекты сопровождались странным биохимическим изменением — скорость обмена фосфата в определенных фосфолипидах значительно усиливалась, но не отмечалось влияние на нефосфорную часть этих молекул. Аналогичный биохимический эффект наблюдался на срезах и микросомах мозга [44]. Иногда наблюдали, что атропин снимает эффект ацетилхолина. В некоторых тканях, таких, как печень, почки и сердце, функция которых не является преимущественно секреторной, ацетилхолин не оказывал влияния на обмен фосфолипидов. [c.180]

    В кишечнике), который состоит из кислых, жидких и плотных веществ, поступающих из желудка. Величина pH увеличивается до 8, при этом создается среда, благоприятная для деятельности ферментов. Сок поджелудочной железы содержит амилазу, которая катализирует гидролиз непереварившихся раньше крахмала, гликогена и декстринов в мальтозу. [c.326]

    Метод дробного высаливания основывается на признании за ферментами белковой природы. Метод адсорбции впервые был предложен А. Я. Данилевским (1862) и впоследствии разработан Вильштеттером. Он основан на адсорбировании ферментов каолином, глиноземом, гидратом окиси железа, белками, тристеарином, холестерином и другими абсорбентами. Этим способом удается не только очистить ферменты от примесей, но и отде- лить их друг от друга. Так, например, из сока поджелудочной железы, содержащего липазу, трипсин и амилазу, липазу адсорбируют гидратом (жиси алюминия (у-модификация глинозема) трипсин извлекается - -модификацией глинозема, а в растворе остается, главным образом, амилаза. Избирательную адсорбцию дополняют избирательной элюцией, т. е. сниманием фермента с адсорбата различными растворителями при соответственно недобранных условиях. Для этой цели могут быть использованы фосфорнокислые соли. Так, например, из смеси сахаразы и мальтазы, адсорбированных на у - иноземе, сначала полностью элюируется первичным фосфатом 1KH.2PO4) мальтаза. [c.339]

    Вполне установлена ценность моющих веществ и их комплексов с другими соединениями, в частности лаурилсульфата натрия и его комплекса с белками, для лечения пептических язв и язвенных колитов. Положительное лечебное действие моющих веществ может быть обусловлено ингибированием действия ферментов или другими биохимическими проявлениями, связанными с поверхностной активностью [53]. Так, было сделано наблюдение, что додецилсульфат натрия замедляет действие in vitro амилазы, липазы и трипсина сока поджелудочной железы, но не замедляет всасывание пищи в кишечнике при введении его в двенадцатиперстную кишку [54]. [c.430]


Смотреть страницы где упоминается термин Амилаза поджелудочного сока: [c.242]    [c.192]    [c.169]    [c.166]    [c.189]    [c.787]    [c.33]    [c.163]    [c.792]    [c.129]    [c.316]    [c.319]    [c.323]   
Биологическая химия Издание 3 (1960) -- [ c.241 ]

Биологическая химия Издание 4 (1965) -- [ c.254 ]




ПОИСК





Смотрите так же термины и статьи:

Амилаза



© 2024 chem21.info Реклама на сайте