Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Кристаллизация изоморфизм

    Изоморфизм проявляется и в том, что кристаллик одного изоморфного вещества может служить зародышем для кристаллизации другого изоморфного с ним вещества из пересыщенного раствора последнего. [c.55]

    В действительности перекристаллизация протекает гораздо сложнее, так как ей может сопутствовать ряд процессов, значительно снижающих эффективность очистки при кристаллизации. Так, ионы или молекулы примесей могут быть механически захвачены образующимися кристаллами основного вещества (окклюзия, инклюзия). Неизбежна также большая или меньшая адсорбция иоиов примесей аа поверхности кристаллов, хотя при образовании крупных кристаллов, имеющих набольшую удельную поверхность, роль адсорбции невелика. Образование твердых растворов (изоморфизм) может иметь место в том случае, когда ионы основной соли и ионы примеси отличаются по размерам не более чем на 10—15% и оба вещества кристаллизуются в одинаковой системе. Тогда часть иоиов основной соли в процессе, роста кристаллов может быть замещена ионами примеси. Может происходить также захват посторонних ионов любого размера, связанный с нарастанием кристалла вокруг адсорбированных ионов. Такие ионы, поскольку они не входят в твердый раствор, представляют собой дефекты кристаллической решетки. [c.11]


    Для кристаллов фторфлогопита, выращенных из расплава, характерна высокая дефектность. Многочисленные дефекты обусловлены как условиями кристаллизации, так и самой структурой слюды. Небольшие количества некоторых изоморфных элементов, содержащихся в компонентах шихты, влияют не только на свойства слюды, но и на свойства и кристаллизационную способность расплава. Например, ухудшение качества кристаллов и уменьшение их размеров происходят при наличии в расплаве натрия в присутствии бария улучшается дифференциация кристаллов слюды от примесей и увеличивается их толщина. Изоморфные замещения— важный фактор практического управления не только свойствами получаемых кристаллов слюды, но и собственно процессом кристаллизации расплава с целью выращивания крупных монокристаллов. В то же время при кристаллизации сложного фторсиликатного расплава с примесями изоморфизм в совокупности с исключительной способностью структуры фторфлогопита к трансформации служит кристаллохимической основой возникновения многочисленных структурных дефектов. [c.44]

    Явление изоморфизма кристаллов было известно задолго до Э. Митчерлиха. Но ему принадлежит решающий вклад в учение об изоморфизме. Он высказал идею о существовании связи между кристаллическим строением и числом простых атомов в молекулах (сложных атомах) соединений. Поэтому кристаллы солей сходных металлов должны иметь одинаковую форму. Он констатировал изоморфизм сульфатов свинца, бария и стронция, нашел, что карбонаты кальция, железа, цинка, марганца и магния обладают близкой ромбоэдрической формой и вызывают взаимную кристаллизацию. [c.93]

    Проведенные многочисленные исследования диэлектрических свойств синтетического кварца в широком температурном (200— 1500 К) и частотном (0,1—10 МГц) диапазонах позволили установить, что кристаллы, выращенные в щелочных системах, характеризуются наличием температурно-частотных максимумов диэлектрических потерь (tgб) релаксационного типа, сопровождающихся дисперсией диэлектрической проницаемости (е ). В случае синтетического кварца имеет место зависимость температуры и частоты максимумов tgб от скорости роста и температуры кристаллизации, а также от примесного состава. Различия в примесном составе обусловливаются и разной природой щелочных ионов, ответственных за диэлектрические потери в кварце в природном кварце — обычно ионы лития, а в синтетическом ионы натрия играют роль зарядовых компенсаторов при изоморфизме АР+— 51 +. Выше уже отмечалось, что если для низкотемпературной области (tgб 10 —10 , <0,1 эВ) максимумы диэлектрических потерь могут интерпретироваться в рамках дипольно-релаксационной модели Д. Дебая с длиной диполя —0,1 нм, то 136 [c.136]


    В стадии осаждения и кристаллизации солей различных металлов из растворов должно быть обеспечено необходимое распределение этих солей в катализаторе и хорошее взаимное соприкосновение их. Очевидно, что в этом процессе осаждения и кристаллизации солей весьма важная роль принадлежит явлениям изоморфизма, так как изоморфные соединения во время кристаллизации должны определенным образом обоюдно ориентироваться. Факторы ориентации имеют большое значение также и в случае обработки осадка перед его фильтрованием, так как вследствие реакций гидролиза и окисления происходит изменение состава осадка и наблюдается (для некоторой части компонентов) изменение кристаллической решетки. [c.363]

    Хорошей проверкой изоморфизма является образование смешанных кристаллов при кристаллизации из раствора, содержащего два соединения. Другой проверкой является продолжение роста кристалла одного соединения при помещении его в концентрированный раствор изоморфного соединения. Однако неспособность к образованию смешанных кристаллов или к дополнительному росту не может служить основанием для заключения, что два соединения неизоморфны. Например, в механической смеси КС1 и КВг имеются целые области (как бы малы они ни были), состоящие исключительно из КС1 или исключительно из КВг. В смешанном кристалле (получающемся при кристаллизации из раствора, содержащего оба соеди- [c.262]

    Как уже отмечалось, неограниченная взаимная растворимость полимеров — очень редкое явление. В определенных условиях она достигается, напр, при смешении поливинилхлорида и бутадиен-нитрильного каучука (СКН-40), поливинилацетата и нитроцеллюлозы. Менее всего способны образовать однофазную смесь кристаллич. полимеры при темп-ре ниже темп-ры плавления существование такой смеси означало бы совместную кристаллизацию различных макромолекул, изоморфизм же в кристаллич. полимерах наблюдается крайне редко. [c.217]

    Этим методом успешно изучается полиморфизм, изоморфизм, мезоморфное состояние (жидкие кристаллы), исследуется зависимость скорости кристаллизации от температуры, а также аналогичная зависимость скорости полиморфного превращения. [c.255]

    Очень существенным, но практически еще не изученным вопросом является характер зависимости коэффициента кристаллизации от размера и формы кристаллов. На основании рас-суждений, носящих скорее качественный, чем количественный характер, был сделан вывод, что величина этого коэффициента мало зависит от размера кристаллов в случае истинного изоморфизма и значительно больше в случае аномальных смешанных кристаллов. [c.81]

    Большое теоретическое и прикладное значение получили исследования Ловица по кристаллизации. Ловиц ввел понятия о пересыщении, о так называемой самопроизвольной и принудительной кристаллизации. Ловиц открыл наличие в растворах при кристаллизации конвекционных потоков, выяснил роль зародышей кристаллизации, дал способы выращивания больших кристаллов. Он предложил также применять кристаллизацию для химико-аналитических определений. Для этого он изготовил модели кристаллов солей из черного воска и подметил явление изоморфизма. Ловицу принадлежит оригинальный метод качественного анализа солей по рисунку скелетных кристаллических образований на поверхности стекла, получающихся после испарения капли раствора. [c.411]

    Окклюзия. При окклюзии загрязняющие вещества находятся внутри частиц осадка. Окклюдированные вещества не участвуют в построении кристаллической решетки осадка, хотя в некоторых учебниках образование смешанных кристаллов изоморфизм) рас-смагривается как частный случай окклюзии. Таким образом, окклюзия отличается от адсорбции тем, что соосажденные примеси находятся не на поверхности, а внутри частиц осадка. Окклюзия может быть вызвана различными причинами, а именно захватом примесей в процессе кристаллизации, адсорбцией в процессе кристаллизации, образованием химических соединений между осадком и соосаждаемой примесью. [c.113]

    Разбирается значение радиоактивности для геохимии и геохронологии, возможность использования ее закономерностей для определения абсолютного возраста минералов и горных пород. Рассматриваются вопросы о полиморфизме и изоморфизме, о силикатах, показана сущность стеклообразного состояния, значение вязкости при кристаллизации магмы. Подчеркнута роль воды для геохимических и гидрогеологических процессов, ее значение в образовании и разру шении минералов, дано представление о природ ных растворах. Рассматривается минералогиче ское правило фаз, а также ряд других вопросов Табл. 19, иллюстраций 116, библиографий 86 [c.2]

    У серебра и золота атомные радиусы одинаковы, у кремния и германия близки друг к другу. Близки они у алюминия и хрома в соединениях, в которых А1 и Сг трехвалентны. Поэтому кристаллы Ag и Аи, Si и Ge, AI2O3 и Сг Оз попарно являются изоморфными. Возможность замещения атомов Ag и Аи, а также Si и Ge дает возможность совместной кристаллизации таких вешеств из расплавов с образованием однородных твердых растворов (см. 7). На основе изоморфизма Ai-jOg и Сг Оз в настоящее время разработана технология получения искусственных рубинов для часовой промышленности, для квантовых усилителей и генераторов (см. гл. П1 и XI). [c.116]


    Оценивая предварительно пригодность квасцов для разделения цезия, рубидия и калия в процессе фракционирования, надо учитывать способность различных квасцов к образованию (вследствие изоморфизма) твердых растворов. Как уже отмечено, алюмоцезиевые и алюмо-калиевые квасцы твердых растворов не образуют. В связи с этим основная трудность при использовании квасцового метода заключается в разделении рубидия и цезия, рубидия и калия, но не цезия и калия. По данным [196, 197] для получения алюморубидиевых квасцов, свободных от калия, требуется от 12 до 22 перекристаллизаций технического продукта. Исследователи нашего времени оценивают фракционированную кристаллизацию квасцов более оптимистично [45, 117, 232]. [c.139]

    Основные минералы бериллия в связи с дефицитностью этого элемента образовались на поздних стадиях кристаллизации магмы. Концентрированию бериллия в расплаве препятствовал изоморфный захват его при кристаллизации других силикатных минералов. Захват определяется сходством тетраэдрических комплексов бериллия, алюминия и кремния, т. е. замещением кремнекислородных и алюмокислородных комплексов на бериллиево-кислородные, бериллиево-фто-ридные или бериллиево-гидроксильные комплексы. Но такого рода гетеровалент-ный изоморфизм, по-видимому, характерен для узко ограниченных условий ми-нералообразования, так как иначе имело бы место полное рассеяние бериллия. Например, при кристаллизации минералов из щелочной магмы вследствие изоморфного захвата бериллий не накапливается. Напротив, при кристаллизации гранитов захвата бериллия практически не происходит это приводит к накоплению бериллия в пегматитах и грейзенах, связанных с кислой магмой. И действительно, все известные месторождения бериллия — постмагматические образования, связанные с поздними стадиями пегматитового или различными этапами гидротермально-пневматолитического процесса. [c.189]

    Папример, захват примеси РО при кристаллизации сул .-фатов может быть связав не с гетеровалентным изоморфизмом ионоп 50Г и РОГ, а с ис ных ионов 50 " и ЯРО  [c.86]

    Ограничению изоморфизма в триютинной фазе можно дать такое обьяснение. Чем больше содержание примесного компонента, тем более дефектной (соответственно менее плотной) становится структура твердого раствора и тем предпочтительнее оказывается его кристаллизация в более высокосимметричной ромбической модификации по причинам, изложенным в разделе 3. [c.186]

    Существование различных веществ в одной и той же кристаллической форме называется изоморфизмом Срав-ноформенностью), а такие вещества — изоморфными При совместной кристаллизации различных веществ, если частицы, из которых они состоят, близки по разме рам и однотипны, могут обра зовываться смешанные кристаллы В таких кристаллах при сохранении формы кри сталлической решетки, ха рактерной для одного вещества, частицы этого вещества замещаются однотипными [c.81]

    Изучение систем КСЮз-КЬСЮз-НгО и K IO3- S IO3-H2O при 25° С подтвердило отсутствие изоморфизма между хлоратом калия и хлоратами рубидия и цезия. При совместной кристаллизации хлоратов рубидия и цезия образуется непрерывный ряд твердых растворов [368]. [c.138]

    В твердых растворах замещения атомы растворенного тела замещают атомы растворителя (атом за атом). Это явление было открыто в 1819 г. Э. Митчерлихом при наблюдении за кристаллизацией из водного раствора солей К2НРО4 и K2HASO4. Если в растворе находились фосфат и арсенат калия, то выпадали однородные кристаллы смешанного состава. Это явление было названо изоморфизмом. Такие соединения по отношению друг к другу называются изоморфными. [c.28]

    Кристаллизация фторслюд в присутствии элементов, замещающих калий. Экспериментальное изучение кристаллизации фторслюд проводилось с шихтами типа фторфлогопита, в которых калий замещался другими элементами Ме по схемам изовалентного (A eд.K -.т)Mgз[A SiзOlo]F2 или гетеровалентного (Ме,сК1- )М зХ Х[А1 +я51з-лОю]р2 изоморфизма (х — коэффициент при замещающем коэффициенте). Активность элементов Ме к замещению калия в кристаллах слюды характеризуется коэффициентом сокри-20 [c.20]

    К основным параметрам кинетики кристаллизации из расплава Относятся степень переохлаждения, скорости зародышеобразования и роста кристаллов. Кинетические характеристики кристаллизации фторслюды из расплава определяются совокупностью конкретных условий, включающих ликвационные явления во фторсиликатном расплаве, температурные условия, гетерогенный характер зарождения кристаллов, массовую кристаллизацию, кри-сталлохимнческие факторы (изоморфизм, анизотропия структурных сил связи и т. д.). [c.35]

    Соосаждепие происходит при наличии изоморфизма между компонентами, образования смешанных кристаллов в результате поверхностной адсорбции примесей образовавшимся осадком и по другим причинам. Кристаллизация из растворов — типовой процесс химической технологии, особенно характерный для производства солей и минера л ьныхудобрений, гидрометаллургических процессов, а также для производства ряда органических полупродуктов и продуктов, например сульфокислот, фенола, салициловой кислоты, ядохимикатов, нафталина и его производных, красителей и многих других. [c.121]

    Полиморфизм в минералах — свойство минералов существовать в нескольких структурных формах (полиморфных модификациях) при одном и том же химическом составе. Устойчивость полиморфных модификаций определяется состоянием миним. свободной энергии и зависит от состава (с учетом изоморфных примесей, см. Изоморфизм) и термодинамических услови (давления, т-ры). Каждой полиморфной модификации соответствует определенное (по давлению и т-ре) поле устойчивости на диаграмме состояния, что определяет возможность их получения в процессе кристаллизации. Одни вещества (напр., азотнокислый аммоний, существующий в пяти модификациях при т-ре 17—80 С) легко получить в различных модификациях, для других (напр., углерода) необходимо очень резкое изменение внешних условий. Иногда один и тот же минерал существует в двух или нескольких модификациях при близких термодинамических условиях (напр., рутил — анатаз — брукит). Возникновение той или иной модификации может быть связано с составом раствора, содержанием примесей, условиями кристаллизации и др. генетическими факторами. Часто полиморфные модификации в метастабильном состоянин существуют вне термодинамического поля устойчивости опп могут указывать па усло- [c.220]

    Для качественной характеристики соосаждения радиоактивных элементов с кристаллическими осадками из разбавленных растворов используется правило В. Г. Хлопина (1924) Радиоэлемент или любой другой химический элемент, находящийся в следах (микро-компонент), переходит из раствора в твердую кристаллическую фазу лишь в том случае, если он может принимать участие в построении кристаллической решетки последней, т. е. если он с анионом твердой фазы образует соединения, кристаллизуюи иеся изоморфно или изодиморфно с соответствующим соединением микро-компонента . Например, из растворов сернокислого кальция радий не кристаллизуется совместно с гипсом, несмотря на то, что сернокислый радий плохо растворим. Это объясняется отсутствием изоморфизма сульфатов радия и кальция. Наоборот, если радиоактивный элемент образует с осадком смешанные кристаллы, то он будет соосаждаться и в том случае, если оба соединения хорошо растворимы. Ня этом свойстве основана фракционная кристаллизация хорошо растворимых солей (хлориды радия и бария, сульфаты америция и лантана). [c.142]

    В результате исследований Ларсена и Буи магматических пород, развитых в горах Хейвуд (Монтана), оказалось необходимым пересмотреть прежние теоретические выводы. Кроме того, анальцим, содержащий калий, несомненно представляет первичную кристаллизацию и тем самым указывает на изоморфизм между лейцитом и анальцимом, Ларсен и Буи пришли к выводу, что лейцит в этих породах содержит значительное количество примеси молекулы натриевого лейцита. Наряду с приведенной выше реакцией такого кристаллического раствора лейцита с расплавом, они обнаружили признаки распада калиево-натриевого анальцима на ортоклаз и нефелин, что соответствовало реакции псевдолейцита по Найту, с той только разницей, что анальцим и нефелин (частично) в этом случае [c.478]

    Изоморфизм калиевых и бариевых полевых шпатов имеет очевидное значение для определения геохимической роли бария . Энгельхардт характеризует ортоклаз как основной носитель бария, например в сиенитовых породах. Маскировка ионов бария объясняется по В. Гольдшмидту сходством величин ионных радиусов и электростатических полей при введении бария в структуру ортоклаза. Вообще говоря, наиболее богаты барием те полевые шпаты, которые образовались при наиболее высоких температурах и носят характер первичной кристаллизации. С другой стороны, плагиоклазы очець бедны барием, так как радиусы ионов бария и кальция сильно различаются. Ионы стронция с меньшим ионным радиусом замещают ионы кальция в плагиоклазах без особых затруднений. [c.512]

    Как было показано Ганом, распределение микрокомпонента в процессе кристаллизации по всему объему твердой фазы наблюдается не только при образовании истинных, аномальных и гриммовских смешанных кристаллов, но в ряде случаев также при отсутствии изоморфизма и признаков, необходимых для образования гриммовских смешанных кристаллов. Например, изотопы радия ThX и свинца ThB соосаждаются с кристаллами сульфатов и хроматов щелочных металлов. При этом получается закономерное распределение микрокомпонента в кристаллах. [c.78]

    Смешанные кристаллы совершенно однородны и могут быть названы твердыми растворами. Если подвесить кристалл алюминиевых квасцов в растворе хромовых квасцов, то кристалл будет продолжать расти, как он рос в собственном растворе. Сущность изоморфизма в том, что атомы или ионы, имеющие приблизительно одинаковые размеры и заряды, могут замещать друг друга в кристаллической решетке. Например, K I и Na I не изоморфны, хотя их решетки одинаковы, так как ионы К+ и Na+ имеют различные размеры. Полиморфигм заключается в том, что одно и то же вещество в зависимости от условий кристаллизации образует кристаллы различной формы. Вещества, обладающие этими свойствами, называются полиморфными. Каждая кристаллическая форма полиморфного вещества устойчива лишь в определенных пределах температуры и давления. Например, нитрат аммония при обычной температуре имеет ромбическую кристаллическую решетку, при 85°С — гексагональную, при 125°С — правильную. Явление полиморфизма широко распространено среди минералов. [c.74]

    В ряде случаев при осаждении наблюдается явление окклюзии, т. е. захвата посторонних примесей, в частности маточного раствора в процессе кристаллизации (механическая окклюзия), адсорбции в процессе кристаллизации (адсорбционная окклюзия), образования смешанных кристаллов (окклюзия вследствие изоморфизма) и, наконец, образования смешанных химических соединений между осадком и соосаждаемой примесью (химическая окклюзия). Количество окклюдированного катиона возрастает с увеличением в растворе количества анионов, входящих в состав решетки кристаллов осадка, и понижается (даже до нуля) в присутствии катионов решетки, присутствующих в избытке в растворе. При окклюзии посторонних анионов выполняется обратное правило. Количество соосажденного вещества зависит от обработки осадка перед фильтрованием и скорости образования осадка. [c.365]

    Окклюзия. Окклюзия отличается от адсорбции тем, что соосажденные примеси находятся в этом случае не на поверхности, а внутри частиц осадка. Поэтому окклюдированные примеси не могут быть удалены из осадка промыванием. Для переведения их в раствор необходимо растворить весь осадок. Окклюзия может быть вызвана различными причинами, а именно захватом посторонних примесей и, в частности, маточного раствора в процессе кристаллизации (механическая окклюзия), адсорбцией в процессе кристаллизации (адсорбционная окклюзия или так называемая внутренняя адсорбция ), образованием смешанных кристаллов (окклюзия вследствие изоморфизма) и, наконец, образованием химических соединений между осадком и соосаждае-мой примесью (химическая окклюзия). [c.116]


Смотреть страницы где упоминается термин Кристаллизация изоморфизм: [c.63]    [c.94]    [c.195]    [c.143]    [c.635]    [c.84]    [c.112]    [c.120]    [c.13]    [c.120]    [c.21]    [c.254]    [c.162]   
Основные процессы и аппараты химической технологии Издание 4 (низкое качество) (1948) -- [ c.588 ]




ПОИСК





Смотрите так же термины и статьи:

Изоморфизм



© 2025 chem21.info Реклама на сайте