Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Водородная связь температуры кипения

    Водородная связь объясняет аномально высокие температуры кипения и плавления ряда веществ, аномальную диэлектрическую проницаемость и не соответствующую строению молекул растворимость. Различают два вида водородной связи межмолекулярную и внутримолекулярную. В первом случае атом водорода связывает два атома, принадлежащих разным молекулам (например, растворителям и масляному сырью), во втором случае оба атома принадлежат одной и той же молекуле. Образование водородной связи наиболее вероятно при пониженных температурах с повышением температуры водородные связи ослабляются или рвутся вследствие усиления теплового движения молекул. [c.217]


    Какое влияние оказывают водородные связи на температуры кипения жидкостей  [c.641]

    В то же время соединения серы проявляют незначительные признаки образования водородных связей температуры кипения изомерных тиолов и тиоэфиров мало отличаются друг от друга (табл. 9.5). [c.176]

    Электронная структура н пространственное строение молекулы аммиака рассмотрены в 43. В жидком аммиаке молекулы NHj ((i=l,48D) связаны между собой водородными связями, что обусловливает сравнительно высокую температуру кипения аммиака (—33,4°С), не соответствующую его малой молекулярной массе (17 а. е. м.). [c.399]

    Температура кипения тем выше, чем больше молекулярный вес растворителя. При наличии межмолекулярных водородный связей температура кипения еще более повышается. Температуры кипения некоторых наиболее часто используемых растворителей приведены в табл. 20.3. [c.524]

    Фтористый водород в жидком и газообразном состояниях значительно ассоциирован вследствие-образования сильных водородных связей ( Nf. разд. 2,8). Энергия водородных связей в HF составляет 42 кДж/моль, средняя степень полимеризации в газовой фазе при температуре кипения 4. В кристаллическом состоянии НР имеет цепеобразную структуру  [c.470]

    Первичные и вторичные амины образуют межмолекулярные водородные связи, третичные амины к ассоциации неспособны. Соответственно этому температуры кипения вторичных аминов выше, чем температуры кипения первичных (рост молекулярного веса), но третичные амины кипят ниже вторичных. У фосфинов, не дающих водородных связей, температуры кипения неизменно растут от первичных фосфинов к вторичным и третичным  [c.60]

    Фи ические Некоторые физические свойства воды уже рассмат-сг ()й( Т[1а воды ривались ранее угол между связями в Н2О (разд. 5.2.5), водородная связь, температуры плавления и кипения, лед и растворение органических веществ (разд. 4.5.3). [c.380]

    Аммиак ЫНз — бесцветный газ с резким запахом с температурой кипения -33,35°С и температурой плавления -77,75°С. Аномально высокие температуры кипения и плавления аммиака объясняются ассоциацией его молекул вследствие высокой полярности их и образования водородных связей. Критическая температура аммиака равна 132,4°С. Аммиак хорошо растворим в воде (750 литров в литре), ограниченно растворим в органических растворителях. [c.187]


    Необычные свойства воды, которые были описаны в разд. 9.4, объясняются чрезвычайно сильным взаимным притяжением ее молекул. Это мощное взаимодействие присуще структурам с так называемой водородной связью. Температуры плавления и кипения гидридов некоторых неметаллов приведены на рис. 9.5. В рядах родственных соединений наблюдается их изменение в нормальной последовательности. Кривые, проведенные через точки для НгТе, НгЗе и Нг5, имеют направления, которые и следовало ожидать, однако при их экстраполяции получаются значения для температур плавления льда и кипения воды, приблизительно равные —100 и —80°С. Наблюдаемое же значение температуры плавления льда на 100 °С выше, а температура кипения воды на 180 °С выше, чем можно было бы ожидать, если вода была бы нормальным веществом аналогичные, но несколько меньшие отклонения показывают фтористый водород и аммиак. [c.249]

    Молекула Н3Р, как и H3N, имеет форму тригональной пирамиды, (dpN = 0,142 нм, НРН = 93,5°). Ее электрический момент диполя значительно меньше (0,18 10 Кл-м), чем у молекулы H3N. Водородная связь между молекулами НдР практически не проявляется, поэтому фосфин характеризуется более низкими температурами плавления (—133,8 С) и кипения (—87,42°С), чем аммиак. Фосфин — чрезвычайно ядовитый газ с неприятным запахом. [c.368]

    Межмолекулярные водородные связи могут образовываться между молекулами одного и того же вещества и разных веществ, а также между молекулами ПАВ и растворителя [217]. В результате такого взаимодействия изменяются важнейшие физико-химические свойства исходных соединений увеличивается молекулярная масса в зависимости от разбавления и типа разбавителя, образуются ассоциаты с аномалией температур плавления и кипения, может измениться растворимость ПАВ. [c.204]

    Энергия водородных связей обычно лежит в пределах 8—40 кДж/моль. Наличие водородных связей является причиной аномально высоких температур кипения и плавления некоторых веществ, так как на разрыв водородных связен требуется дополнительная затрата энергии. [c.71]

    Р с ш с н II е. Кислород более электроотрицательный элемент, чем сера. Поэтому между молекулами воды возникают более прочные водородные связи, чем между молекулами сероводорода , Разрыв этих связен, необходимый для перехода воды в газообразное состояние, требует значительной затраты энергии, что и приводит к аномальному повышению температуры кипения воды. [c.71]

    Многие наиболее важные свойства воды обусловлены водородными связями. Наличие водородных связей во льду и в жидкой воде определяет неожиданно высокие температуры плавления и кипения воды по сравнению с другими водородными соединениями элементов группы VI периодической системы-НгЗ, НзЗе и НзТе. Аналогичные аномалии, вызванные теми же причинами, обнаруживают жидкий аммиак и фтористый водород (рис. 14-19). Однако в аммиаке водородная связь выражена менее сильно, [c.619]

    Водородные связи между молекулами воды объясняют аномалию в температурах кипения гидридов. Так, у гидридов элементов 6-й группы от НоТе к НгЗ температура кипения понижается, и только у НзО она резко повышена благодаря ассоциации ее молекул через Н-связи. Аналогичную аномалию проявляет МНд в пятой и НР в седьмой группе элементов. [c.139]

    Водородная связь объясняет аномально высокие температуры кипения и плавления ряда веществ, аномальную диэлектрическую проницаемость и не соответствующую строению молекул растворимость. Так, способность спиртов, аминов, карбоновых кислот растворяться в значительной степени обусловлена наличием водородной связи. Эта же связь приводит к ассоциации молекул. На , пример, при ассоциации молекул спирта образуются димеры, три-меры и т. д.  [c.45]

    Наиболее удобным индикатором водородной связи является температура кипения, так как ее легко измерить. Так, температуры кипения спиртов КОН больше, чем соответствующих меркаптанов К8Н.. Простые эфиры даже с большой молекулярной массой более летучи, [c.132]

    В рядах сходных соединений температуры кипения и теплоты парообразования обычно увеличиваются с ростом молекулярной массы. Однако при переходе от HF к H I и от Н2О к H2S температура кипения и теплота парообразования, наоборот, значительно уменьшаются (рис. 1.69). Это объясняется тем, что между молекулами HF и между молекулами Н2О образуются сильные водородные связи. [c.133]

    В неорганической химии водородные связи уже давно известны они обусловливают, в частности, аномально высокие температуры кипения воды и фтористого водорода, благодаря им боран существует в виде димера даже при высокой температуре. [c.642]

    Однако анализ температур кипения водородных соединений элементов IV—VI групп указывает на аномальное поведение аммиака ЫНз, воды Н2О и фтороводорода НР(в) по сравнению с водородными аналогами азота, кислорода и фтора соответственно, что обусловлено действием более эффективных межмолекулярных сил, которые носят название водородной связи. Единственный электрон атома водорода обусловливает возможность образования им только одной ковалентной связи. Однако если эта связь сильно полярна, например в соединениях водорода с наиболее электроотрицательными элементами (Г, О, Ы), то атом водорода приобретает некоторый положительный заряд. Это позволяет электронам другого атома приблизиться [c.38]


    Вещества, молекулы которых соединены водородными связями, отличаются по своим свойствам от веществ, аналогичных им по строению молекул, но не образующих водородные связи. Температуры плавления и кипения соединений с водородом элементов подгруппы IVA, в которых нет водородных связей, плавно понижаются с уменьшением номера периода (рис. 14.2). У соединений с водородом элементов подгрупп VA—VIIA наблюдается нарушение этой зависимости. Три вещества, молеку- [c.250]

    При образовании водородной связи изменяются межъядерные расстояния в молекуле, связь К-Н удлиняется, изменяется электронная структура молекул. Наличие водородных связей сказывается на ряде физических свойств систем, их спектральных и диэлектрических характеристиках. Жидкости и кристаллы, в которых имеет место образование ассоциатов и сольватов, характеризуются повышенными температурами кипения и плавления. [c.97]

    Специфические силы взаимодействия играют существенную роль при хроматографическом разделении смеси веществ, обладающих различным строением, но близкими температурами кипения. К ним относится водородная связь, возникающая между атомом водорода и такими атомами, как О, С1, Р, N. В образовании водородной связи наряду с электростатическими взаимодействиями существенную роль играет электронное взаимодействие. Специфическими силами может быть также обусловлено комплексообразование. [c.171]

    Энергия водородных связей. Водородную связь обычно изображают О—Н...0, где сплошная линия соответствует обычной связи О—Н в исходном соединении (например, в воде Н—О—Н или метиловом спирте СНд—О—Н). Точечная линия показывает другую связь, образованную водородом. Эта связь называется водородной связью. Эту связь часто обозначают точками, чтобы подчеркнуть, что она гораздо слабее обычной ковалентной связи. Температуры кипения, приведенные на рис. 17-14, показывают, что водородная связь должна быть гораздо более прочной, чем обычные вандерваальсовы силы. Из экспериментов известно, что в большинстве случаев при образовании водородных связей выделяется энергия в количестве от 3 до 10 кшлЫоль.  [c.471]

    I В ряду Н1—НВг—НС1 температуры кипепия и плавления изменяются весьма закономерно (табл. 24), тогда как при переходе к НР оии резко возрастают Как уже говорилось в 47, это обусловлено ассоциацией молекул фтороводорода в результате возиик-иовения между ними водородных связей. Как показывает определение плотности пара, вблизи температуры кипения газообразный (Ьтороводород состоит из агрегатов, имеющих средний состав (НР) . При дальнейшем нагревании эти агрегаты постепенно распадаются, причем лишь около 90 °С газообразный НР состоит из простых молекул. [c.361]

    Большинство известных органосилилгидразинов являются бесцветными подвижными жидкостями, перегоняющимися в вакууме и стойкими к нагреванию. Силилирование увеличивает температуры кипения, как правило, очень незначительно, так как имеет место балансирование между увеличением массы молекулы и снижением тенденции к образованию водородных связей. Температура плавления триалкнлсилилгидразинов лежит ниже —100 С. Трифенилсил ил гидразин является твердым при комнатной температуре. [c.252]

    Полярность связи N — Н обусловливает между молекулами ИдЫ водородную связь. Поэтому температуры плавления (—77,75 С) и кипения (—33,42°С) аммиака довольно высоки, он характеризуется значительной энтальпией испарения и легко сжижается. На этом основано его применение в холодильных маитинах. Жидкий аммиак хранят в стальных баллонах. [c.347]

    Водородная связь. Еще в XIX веке было замечено, что соединения, в которых атом водорода непосредственно связан с атомами фтора, кислорода и азота, обладают рядом аномальных свойств. Это проявляется, например, в значениях температур плавления и кипения подобных соединений. Обычно в ряду однотипных соединений элементов данной подгруппы температуры плавления и кипения с увеличением атомной массы элемента возрастают, Это объясняется усилением взанмиога притяжения молекул, чтб связано с увеличением размеров атомов и с ростом дисперсионного взаимодействия между ними (см. 48). Так, в ряду H I—НВг—HI температуры плавления равны, соответственно, [c.154]

    Энергия подородной связи значительно меньше энергии обычной ковалентной связи (150—400 кДж/моль). Она равна примерно 8 кДж/моль у соединений азота и достигает около 40 кДнсоединений фтора. Однако этой энергии достаточно, чтобы вызвать ассоциацию молекул, т. е. их объединение в димеры (удвоергные молекулы) или полимеры, которые в ряде случаев существуют не только в жидком состоянии вещества, но сохраняются и при переходе его в пар. Именно ассоциация молекул, затрудняющая отрыв нх друг от друга, и служит причиной аномально высоких температур плавления н кипения таких веществ как фтороводород, вода, аммиак. Другие особенности этих веществ, обусловленные образованием водородных связей и ассоциацией молекул, будут рассмотрены ниже, при нзученни отделыгьгх соединений. [c.156]

    Наличие внутримолекулярной водородной связи и хелатной структуры подтверждается еще и тем, что температура кипения енольной формы ацетоуксусного эфира ниже, чем кетонной. Обычно спирты, молекулы которых образуют межмолеку-лярные водородные связи, имеют температуры кипения несколько выше, чем карбонильные соединения с таким же числом атомов углерода. Например, температура кипения изопропилового спирта на 26 °С выше, чем температура кипения ацетона. [c.237]

    Подобно молекулам воды (см. 70), молекулы иизших спиртов связываются между собой водородными связями. Поэтому они представляют собой ассоциированные жидкости и имеют более высокие температуры кипения, чем углеводороды, производными которых они являются, и чем другие органические вещества с таким же составом и молекулярной массой, но не содержащие гидроксильных групп. Фенолы при обычных условиях находятся, как правило, в кристаллическом состоянии. [c.480]

    Сравним три изоэлектрониые молекулы ННз, Н2О и НР Все они могут образовывать водородные связи, причем связи НР-.-НР прочнее, чем НгО- -НгО. Но только у молекулы Н2О число иеподеленных электронных пар (две) равно числу атомов Н и благодаря этому возможно образование тетраэдрической структуры льда, сохраняющейся в значительной степени в жидкой Н2О. Отсюда в ряду жидких МНз, Н2О, НР вода имеет наибольшее число водородных связей и поэтому самую высокую температуру кипения. Не только ННз и НР, но и никакие другие молекулы не Образуют между собой тетраэдрическую систему водородных свя зей, характерную для воды, [c.439]

    Теплоты плавления, испарения и температуры кипения. На разрушение водородных связей при плавлении и испарении требуется энергия порядка 40 кДж/моль, в то время как на разрушение ван-дер-ваальсоБых связей —энергия около 1—5 кДж/моль. Поэтому жидкости, в которых имеются водородные связи между молекулами (ассоциированные жидкости), обладают сравнительно высокими теп-лотами испарения и плавления (см. табл. 14). По той же причине температуры кипения у ассоциированных жидкостей выше, чем у неассоциированных. Сравним, например, два изомера этанол СзН ОН (Т = 351 К), А,Я = 42,63 кДж/моль и диметиловый эфир СНзОСНз (Т, = 249 К), А,Я = 18,6 кДж/моль.  [c.139]

    Водородная связь. Давно было замечено, что простейшие соединения водорода с легкими сильно электроотрицательными элементами, например фтором или кислородом, отличаются от аналогичных соединений с тяжелыми элементами ненормально высокими температурами кипения и плавления. Это объясняли способностью молекул соответствующих водородных соединений (например, фтороводорода, воды, аммиака) образовывать ассоциаты — димеры, тримеры и более сложные полимеры. Такая ассоциация молекул осунгествляется посредством возникновения так называемой водородной связи. [c.64]

    Электропроводность воды чрезвычайно мала. Кристаллы воды образуют решетку молекулярного типа. Давление пара при различных температурах см. табл. IV.2 Приложения. Сравнительно высокая температура кипения воды объясняется особенностями ее структуры в жидком состоянии, сильным межмолекуляриым взаимодействием, вызванным преимущественно водородными связями. Плотность большинстна растворителей с повышением температуры уменьшается, тогда как плотность воды при повышении темпера-ож0 дд увеличивается, достигает максимальной величины при 4°С (1,000 г/см ) и уменьшается прн дальпеп-и повышении температуры. Значения [c.170]

    Температуры кипения и плотности ддя одинаковых алкильных производных возрастают от фторидов к иодцдам. Бром-, иод-, полихлор-алкилпроизводные и арилгалогениды тяжелее воды (табл. 8.1). Хотя органические галогениды - полярные соедашения, они практически нерастворимы в воде (очевидно, из-за того, что не образуют водородные связи), но растворимы в органических растворителях. [c.187]

    Отличия фенолов от алифатических спиртов и ароматических углеводородов заключаются в том, что первые - кристаллические вещества, тяжелее воды, с высокими температурами кипения Наприл ер, температура кипения фенола (182 °С) на 70 °С вьшхе, чем у толуола (I 0,6 °С), хотя молекулярные массы у них близки. Это происходит вследствие наличия водородных связей (причем фенол может образовьшать не только меж-, но и внутримолекулярные связи, как, наприме(), о-салициловая кислота). При этом, поскольку внутримолекулярные связи образуются взамен межмолекулярных, орто-изомеры фенолов имеют меньшие температуры кипения и хуже растворяются в воде, чем пара- и мет а-изомеры. Орто-крезол кипит при 191 °С, мета- и пара— около 201 °С, орто-хлорфенол кипит при 176 °С, пара-изомф при 220 °С (табл. 9.2). [c.38]

    Температуры кипения эфиров незначительно вьшге, чем у близких по молекулярной массе алканов, несмотря на наличие в молекуле щзо-стых. эфиров элекгроотрицательного кислорода (табл. 10.1). Т о е гь эфиры легколету>[и. а первые два представителя (метиловый и метилэгало-вый) при нормальных условиях - газьг Это обусловлено практической невозможностью образования между молекулами эфира водородных связей. [c.50]

    Мфкагттаны по свойствам довольно существенно отличаются 01 спиртов (табл. 19.1). Температуры юшения тиолов ниже температур кипения соответствующих спиртов, что связано с меньшей электроотрицательностью серьг по сравнению с кислородом, вследстпзие чего тиолы менее склонны образовывать водородные связи. Соответственно тиолы гораздо хуже спиртов растворяются в воде. [c.172]


Смотреть страницы где упоминается термин Водородная связь температуры кипения: [c.68]    [c.277]    [c.315]    [c.57]    [c.133]    [c.21]    [c.149]    [c.40]    [c.23]   
Курс теоретических основ органической химии (1959) -- [ c.164 , c.169 ]




ПОИСК





Смотрите так же термины и статьи:

Водородные связи

Связь водородная, Водородная связь



© 2025 chem21.info Реклама на сайте