Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Постоянная времени механизма

    На первый взгляд, проблема элементарного химического акта в мономолекулярной реакции может показаться более простой, чем в бимолекулярной реакции. В действительности это далеко не так. Трудность проблемы заключается в том, что большинство мономолекулярных реакций являются сложными реакциями, протекающими через ряд параллельных и последовательных стадий. В настоящее время общепринятой схемой описания мономолекулярной реакции является схема, предложенная Линдеманом (1922). Рассмотрим особенности мономолекулярной химической реакции типа Ai -> Аа, протекающей в газовой фазе при постоянном объеме. Не вдаваясь в подробности молекулярного механизма процессов активации, дезактивации и химического акта, выразим скорости отдельных стадий и всего процесса с помощью метода формальной кинетики. Скорость п процесса активации молекул Ai можно выразить как сумму скоростей бимолекулярных реакций [c.588]


    Очистка топливных дистиллятов в электрическом поле. В промышленных условиях высокая интенсивность контактирования реагирующих масс в большинстве случаев приводит к образованию эмульсии, разделение которой требует значительного времени кроме того, не всегда обеспечивается достаточно полное отстаивание отработанной щелочи, что приводит к значительным ее потерям. Для интенсификации разделения нефтепродукта и реагента 1В последнее время широко применяют отстаивание в электрическом поле постоянного тока высокого напряжения. Основным аппаратом электроочистки является электроразделитель, представляющий собой горизонтальную или вертикальную цилиндрическую емкость, внутри которой последовательно размещены разно-заряженные электроды. Диаметр аппарата 3—3,5 м, длина около 14 м. Механизм действия электрического поля состоит в следующем под действием электрического поля частицы удаляемых соединений (дисперсной фазы), объединяясь, укрупняются и иод действием силы тяжести осаждаются. Укрупнение капель объясняется тем, что при их сближении напряженность электрического поля между ними возрастает, что приводит к пробо о поверхности капель и их слиянию. [c.56]

    При очень низких температурах, когда атомы примеси еще ве ионизированы, основную роль играет рассеяние на нейтральных примесях. Рассеяние носителей заряда на нейтральных атомах примеси можно приближенно рассматривать как рассеяние медленных электронов с массой /п на атоме водорода, погруженного в среду с диэлектрической постоянной %. Время релаксации для этого механизма [c.250]

    В настоящее время механизм явлений, происходящих в воде под действием магнитного поля, еще до конца не изучен и научные основы омагничивания разработаны недостаточно. Тем не менее практическое использование этого способа приносит огромную пользу народному хозяйству. В нефтегазовой промышленности магнитная обработка может быть успешно применена для уменьшения отложений парафина, смол и солей, а также для торможения наводороживания стали при воздействии влажного сероводородсодержащего газа или обводненной нефти. Накопленный опыт свидетельствует о значительном снижении отложений неорганических солей при добыче и транспортировке обводненной нефти на стенках подъемных труб, выкидных линий, сборных коллекторов и насосов при установке круглых постоянных магнитов в нижнем участке скважин и на выкидных линиях. [c.192]

    Широко распространено введение порошка методом вдувания его в дуговой разряд, протекающий между горизонтально расположенными электродами (рис. 35). Высыпаясь из камеры 1, порошок подхватывается воздушным потоком и просыпается через разряд. Равномерный поток воздуха обеспечивает постоянное время пребывания частичек пробы в зоне возбуждения и постоянную концентрацию его компонентов. Механизм испарения тепловой. Сте- [c.76]


    Для АТФ характерна большая скорость обмена, особенно во время выполнения интенсивных физических упражнений. В скелетных мышцах она может достигать 0,5 кг мин . Однако существенного снижения уровня АТФ в клетках не отмечается. Даже при напряженной мышечной деятельности, вызывающей утомление, запасы АТФ в мышцах могут снижаться только в течение нескольких секунд на 20—25 %, поскольку постоянно работают механизмы ее восстановления. Следовательно, в клетках поддерживается относительное постоянство концентрации АТФ. Это обеспечивается сбалансированностью процессов образования (ресинтеза) и использования (утилизации) АТФ. При увеличении скорости использования АТФ автоматически активируется механизм ее образования  [c.44]

    Хотя мы и не касаемся непосредственно механизма реакций, нри обсуждении вопроса, является ли стехиометрическое уравнение данной реакции полным, существенную помощь могут оказать простейшие представления о ее механизме. Пусть, например, реакция Л —> 5 идет в присутствии катализатора, например, энзима Е. Будем считать, что процесс в действительности проходит в две стадии сначала А и Е образуют комплекс С, а затем С диссоциирует на В VI Е. Тогда реакция А В заменяется на две реакции А Е С и С —> 5 -Ь . Если скорость реакции зависит только от текущих (мгновенных) концентраций веществ А и В, уравнение реакции А В является полным. Скорость реакции может также зависеть от фиксированной начальной или общей концентрации энзима, и тогда эта концентрация будет параметрической переменной. Но если скорость реакции зависит от мгновенной концентрации комплекса С или энзима Е, уравнение реакции Л —> i не будет полным. Можно предположить, что концентрация комплекса С всегда постоянна, Г и, таким образом, исключить ее из кинетического закона, выразив скорость реакции А В только через концентрации этих двух ве-. л ществ или одного из них. К сожалению, гипотезы подобного рода почти никогда не оправдываются в точности. Например, если в на-чальный момент в системе нет комплекса С, должно пройти некоторое время прежде чем будет достигнута его стационарная концентрация, которая хотя и не является строго постоянной, но сравнительно медленно меняется во времени. Б некоторых случаях период индукции бывает очень коротким, так что гипотеза о постоянстве концентрации комплекса С выполняется в течение почти всего периода реакции и выведенный с ее помощью кинетический закон находится в достаточно хорошем соответствии с экспериментальными данными. При необходимости уравнения таких реакций могут быть выделены в особый класс почти полных , но такое выделение вызывает возражения в теоретическом отношении, хотя и может оказаться практически полезным. [c.17]

    Компрессорные установки оснащают местными дистанционными приборами контроля температуры, давления и других параметров в соответствии с действующими нормами. Во время эксплуатации компрессоров устанавливают постоянный контроль за всеми параметрами их работы. Компрессоры оборудуют необходимой сигнализацией, предупреждающей об отклонении режима работы, и блокировками для автоматической остановки при аварийной ситуации. Во время работы компрессора следят также за смазкой цилиндров и механизмов, не допуская растекания и разбрызгивания смазочных материалов. Сжатый газ или воздух очищают от масла после каждой степени сжатия, регулярно дренируют накопившуюся смазку из маслоотделителей. [c.106]

    Это выражение будет иметь силу в том случае, если суммарная мольная концентрация ингибиторов остается постоянной. Долгое время общепризнанным являлось положение, согласно которому эффект синергизма может проявляться только в том случае, если применяется бинарная смесь ингибиторов, в которой каждый из компонентов осуществляет ингибирование по различному механизму один за счет линейного обрыва (ингибирование неразветвленного цепного процесса), а другой за счет разрушения гидроперекисей на неактивные продукты [16, 17]. Однако в дальнейшем было доказано, что эффективными синергическими смесями являются также бинарные системы, в которых оба компонента осуществляют ингибирование цепного процесса окисления за счет линейного обрыва [18, 19, 20, 21]. [c.623]

    Для нормальной работы печи на постоянной мощности и заданной ступени напряжения приходится все время регулировать силу тока, поддерживая ее постоянной. Такая регулировка достигается выравниванием электрического сопротивления реакционной зоны путем изменения пути прохождения электрического тока в ванне печи. Это изменение осуществляется подъемом и опусканием электродов с помощью механизма перемещения, который обеспечивает равномерный и плавный подъем и опускание электрода. Скорость перемещения электрода должна составлять 0,1—0,5 м/мин. [c.128]

    В настоящее время в лабораториях широко распространены одночашечные неравноплечие весы, взвешивание на которых проводится по принципу замещения. При ненагруженной чашке весов 1 коромысло 2 на том конце, где подвешена чашка (рис. 32), нагружено гирями 3, которые можно снимать и возвращать специальным механизмом. Этот набор гирь уравновешен на другом конце коромысла противовесом 4, который укреплен постоянно. Когда на чашку весов 1 помещают взвешиваемое тело, то равновесие коромысла нарушается, и для его установления снимают с коромысла гири 3 до тех пор, пока коромысло не вернется в начальное положение. Масса снятых с коромысла гирь равна массе взве- [c.42]

    Более детальный механизм превращения исходных веществ в конечные продукты дается теорией переходного состояния. Согласно этой теории реагенты взаимодействуют с образованием неустойчивых переходных состояний, называемых активированными комплексами, которые самопроизвольно диссоциируют на конечные продукты. Кроме того, предполагается, что все время существует равновесие между исходными реагентами и активированными комплексами и что скорость распада комплекса одна и та же для всех реакций и равна кТ/Ь, где к — постоянная Больцмана, а Ь = 6,62-10 эрг-сек — постоянная Планка. Таким образом, для прямой элементарной реакции обратимого процесса [c.43]


    При термическом спекании различных дисперсных систем большую роль играет объемная диффузия [76, 77]. При спекании первичные частицы, которые в первоначальный момент времени касались только в одной точке, через некоторое время будут соприкасаться по основанию сегмента с радиусом А (рис. 25,а). При этом одновременно уменьшается поверхность и удельный объем пор, а также становятся меньше линейные размеры образца — происходит его усадка. При таком механизме спекания в первые моменты поверхность уменьшается в большей степени, чем объем пор. Однако, в дальнейшем картина меняется. При сближении частиц потеря суммарной поверхности постоянно уменьшается. Исходя из этого, средний радиус пор при уменьшении удельной поверхности должен вначале расти, а затем уменьшаться. [c.55]

    Джилль (208) в свое время предложил очень простой метод определения испаряемости масел, но, к сожалению, его нелегко стандартизовать. Кружок фильтровальной бумаги определенного сорта, диаметром в 41,27 мм (1 /а дм.), с отверстием по середине в 15,87 jtji < /в дм.) хорошо высушивается до постоянного веса в эксикаторе над серной кислотой. Затем его смачивают 8 каплями Л1асла (0,14—0,15 г), и когда масло совершенно равномерно распределится в порах бумаги, фильтр нагревают определенное время до желаемой температуры и обратным взвешиванием определяют потерю от испарения. Как не трудно видеть, здесь налицо отсутствие конвекционных токов и полный обмен паров и воздуха поэтому результаты получения количественно выше, чем по Бсем другим способам, но выше также, чем в механизмах. Со всем тем, получаемые цифры ближе к действительности. [c.275]

    Водяной пар действует на поверхность, а не на всю массу вещества первичных частиц. Поэтому он не может ускорить термическую диффузию в объеме частиц геля, которая определяется лишь температурой паровой обработки, В то же время при действии пара уменьшение поверхности ускоряется, поскольку облегчается перенос вещества путем поверхностной диффузии или путем испарения вещества геля в одном месте и конденсации его в другом. По поверхностно-диффузионному механизму спекание катализатора происходит следующим образом (рис. 25,6). Вещество меньшей из двух соприкасающихся первичных частиц движется по ее поверхности к месту контакта обеих частиц и переходит на большую первичную частицу. В результате этого меньшая частица в конце концов исчезает, а более крупная частица растет. Крупные термодинамически более стабильные частицы поедают мелкие. В случае движения вещества по поверхности исходное взаимное расположение первичных частиц сохраняется, т. е. упорядочения упаковки геля не происходит. Поэтому внешние геометрические размеры шарика катализатора не изменяются. Удельный объем пор катализатора также должен оставаться постоянным, так как независимо от размера первичных частиц общий объем материала шариков катализатора остается прежним. В результате уменьшения общего числа первичных единиц и увеличения их среднего размера уменьшается поверхность единицы массы мате- [c.55]

    Защитные ограждения выполняют в виде глухих кожухов, футляров, перфорированных листов, предохранительных металлических сеток, ограждающих перил и др. Глухие кожухи из металла или прочных неметаллических материалов (пластмасс) устанавливают для ограждения вращающихся детален, за которыми не требуется постоянное наблюдение во время работы механизма, например, на муфтах сцепления центробежных насосов. Сплошными ограждениями на высоту не менее [c.103]

    Существование переменной отрицательной энергии активации может быть интерпретировано в рамках ЕТ-механизма согласно Гусейну и Притчарду [202]. В настоящее время необходимо признать, что вряд ли вообще какая-нибудь элементарная химическая реакция при малой энергии активации может быть хорошо охарактеризована при помощи аррениусовой или тем более степенной функции с постоянными параметрами в широком интервале температур [203]. [c.120]

    Несмотря на больщое разнообразие существующих расчетных схем, их можно объединить в две больщие группы, отличающиеся принципами, заложенными в основу их построения. Построение одной из этих групп основано на схематизации процесса фильтрации жидкости в неоднородной среде по системе изолированных трубок тока, пропластков, капилляров. Проницаемость каждой изолированной- трубки тока постоянна при движении жидкости по ней и определяется вероятностно-статистическими методами [2, 27, 31]. Такие модели позволяют анализировать особенности потоков жидкости в пласте. Но строго фиксированный набор трубок тока и заданная схема движения жидкости не отражают свободного избирательного движения жидкости в реальных пластах. В таких моделях остаются неясными и необоснованными принципы и условия построения жестких однородных трубок тока. Исходя из этих принципов, невозможно удовлетворительно объяснить механизм вытеснения остаточной нефти из заводненных пластов мицеллярными растворами. В связи с этим их практике- ское применение для расчета процесса извлечения нефти мицеллярными растворами в настоящее время представляется нецелесообразным. [c.195]

    Из двух основных механизмов образования субмикротрещин [28], с учетом противоречий механизма Закревского [17] и морфологических данных [58], втягивание концов микрофибрилл, по-видимому, можно считать логическим объяснением вскрытия пустот постоянной формы. В то же время это означает, что возникновение субмикротрещин является процессом, по существу не зависящим от разрыва цепей или от образования концевых групп [220]. Пустоты образуют структурные нерегулярности и сами по себе вносят вклад в общую неоднородность распределения напряжений и деформаций. Их непосредственное влияние как потенциальных концентраторов напряжения на ускорение разрыва цепи слабое и неэффективное. Такой вывод опирается на следующие факты  [c.257]

    Практическое постоянство температур сырьевой смеси во время отбора отдельных фракций позволяет предположить отличие механизма действия поверхностно-актив-ного вещества от нативных нефтепродуктов. По-видимому, введение в систему ПАВ приводит к сложным сорбционно-десорбционным процессам в системе и, как следствие, к формированию в ней агрегативных комбинаций с постоянно изменяющимися размерами центрального ядра и периферийного сорбционно-сольватного слоя. Подобные превращения оказывают влияние на процесс испарения компонентов сырьевой композиции и в этой связи способствуют изменению выхода дистиллятных фракций. [c.220]

    Высокоустойчивые пены с временем жизни от десятков минут до нескольких часов образуются из растворов детергентов при их концентрации с > с ,,. Для них время утончения мало по сравнению с временем жизни пленок, имеющих постоянную предельную толщину, и поэтому время жизни таких пен определяется прочностью пленок с постоянной толщиной. Из всех исследований по пенам большая часть посвящена именно такому типу пен. Это в какой-то мере объясняется тем, что некоторые практически важные свойства пен, например их моющая способность, достигают оптимальных значений при концентрациях пенообразователя, намного превышающих Однако при с особенности, с которыми связан механизм высокой устойчивости пленки, полностью замаскированы. Возможно, по этой причине исследователи до недавнего времени не обращали внимания на черные пятна и механизм их образования (а также и на характеристику с )- [c.238]

    Согласно теориям Дола и Никольского, погрешности стеклянного электрода в ш елочных средах являются следствием того, что в этих растворах состав катионов в набухшей пленке стекла не остается постоянным, ионы водорода замеш аются на катионы из раствора. Эта замена происходит в некотором диапазоне pH. После достижения определенного значения pH все ионы водорода в стекле замещаются на ионы щелочного металла. Потенциал стеклянного электрода становится обратимым к ним и служит теперь катионным, например натриевым электродом. В настоящее время такой механизм установлен не только на основании изучения электрохимических свойств стеклянного электрода, но и на основании прямых исследований адсорбции ионов, проведенных с помощью радиоактивных индикаторов. [c.423]

    На долю пресной воды суши, которую использует человек для своих потребностей, приходится очень небольшая часть общих водных ресурсов земного шара. Однако до конца первой половины XX в. этой воды хватало даже в высокоразвитых промышленных странах. Пресная вода казалась неиссякаемым природным богатством. Это было связано с еще одним необыкновенным ее свойством, проявляющимся в результате процессов 1фуговорота,— постоянным возобновлением пресной воды за кopotкoe время. Круговорот воды в природе представляет собой непрерываемый процесс, постоянно действующий механизм, который не остановится, пока на нашей планете есть солнечная энергия, гидросфера и атмосфера, а подстилающая поверхность разделена на океаны и континенты. [c.8]

    На очистных сооружениях применяются контактные схемы регулирования. Для таких схем управление исполнительным механизмом МЭО осуществляется через реверсивный магнитный пускатель МКР-0-58 илиПМЕ-113. Направление вращения изменяется переключением фаз, подводимых к управляющей обмотке. Так как управляющее напряжение и сдвиг фаз между опорным и управляющим напряжением постоянны, то и частота вращения выходного вала механизма МЭО в режиме контактного управления постоянная. Время одного оборота вала (с), соответствующее режиму контактного управления, является основной характеристикой привода и указывается в знаменателе индекса механизма МЭО, а в числителе — номинальное значение крутящего момента на выходном валу (Н м), также соответствующее режиму контактного управления. [c.38]

    Механизм сухой атмосферной коррозии металлов аналогичен химическому процессу образования и роста на металлах пленок продуктов коррозии, описанному в ч. I. Процесс сухой атмосферной коррозии металлов сначала протекает быстро, но с большим торможением во времени так, что через некоторое время, порядка нес <ольких или десятков минут, устанавливается практически постоянная и очень незначительная скорость (рис. 263), что обусловлено невысокими температурами атмосферного воздуха. Так образуются на металлах в кислороде или сухом воздухе тонкие окисные пленки, и поверхность металлов тускнеет. Если в воздухе содержатся другие газы, например сернистые соединения, защитные свойства пленки образующихся продуктов коррозии могут снизиться, а скорость коррозии в связи с этим несколько возрасти. Однако, как правило, сухая атмосферная коррозия не приводит к существенному коррозионному разрушению металлических конструкций. [c.373]

    Механизм перепуска электрода. Израсходованная в процессе получения фосфора нижняя часть самоспекающегося электрода периодически компенсируется за счет приварки к верхнему концу электрода новых секций кожуха с последующим заполнением их электродной массой. После этого электрод с помощью механизма перепуска он скается вниз. Операции наращивания и перепуска электрода регулируются таким образом, что длина его рабочей части в ванне печи остается примерно постоянной. Этот механизм во время работы должен обеспечивать нормальный перепуск электрода как под собственной тяжестью, так и в случае принудительного пере- [c.126]

    Для изменения частоты вращения колеса вентилятора иредусматривают установку многоскоростных электродвигателей, управляемых гидравлических и электрических муфт, коробок передач и вариаторов, двигателей постоянного тока с тиристорными выпрямителями, асинхронных двигателей с преобразователями ча-стоть(. Угол наклона лопастей колеса вентилятора можно изменять периодически во время остановки вентилятора. Применяют также конструкции вентиляторов, имеющих механизм поворота лопастей с ручным или автоматическим управлением. [c.196]

    Кинетическая схема Д. А. Франк-Каменецкого, на основе которой была создана первая термокинетическая автоколебательная модель, имеет прямое отношение к истолкованию механизма термокинетических колебаний в проточных реакторах. В самом деле, если реакция состоит из двух этапов, для первого из которых характерна более слабая зависимость скорости реакции от температуры и меньший тепловой эффект, то роль первого этапа может выполнить струя реагирующего вещества, подаваемого с постоянной скоростью. На это было в свое время указано Я. Б. Зельдовичем. Позднее Д. А. Франк-Каменецкий подробно рассмотрел этот вопрос во втором издании своей книги Таким образом, простейшее истолкование механизма колебаний в проточных реакторах совпадает с истолкованием, которое дал Д. А. Франк-Каменецкий, введя понятие о термокинетических колебаниях. [c.148]

    Конструкция фильтра. Фильтр-пресс автоматический камерный (рис. 10.7) состоит из набора фильтрующих плит 7, помещенных между верхней упорной 9 и нажимной 6 плитами. На нижней упорной илите 2 смонтирован механизм зажима плит, состоящий из гидроцилпилра 4 и клинового запирающего устройства 5. Упорные плиты соединены четырьмя стяжками 3. Фильтровальная ткань 13 зигзагообразно протянута между фильтрующими плитами на роликах 11. Во время операции выгрузки осадка ткань проходит по ролику, осадок отделяется от ткани и ссыпается в течку 15. Для очистки ткани предназначены ножи 12, смонтированные на опорах роликов. Осадок выгружается по обе стороны от фильтра (на рис. 10.7 показана только правая течка). Фильтровальная ткань получает движение от механизма 16, состоящего из электродвигателя, редуктора, клиноременной передачи и приводного барабана. Устройство 17 обеспечивает постоянное натяжение ткани, а регулировочный ролик 14 устраняет поперечное смещение ткани. В камере регенера ции 18 для очистки фильтровальной ткани от остатков осадка установлены валки активатора, ножи очистки и оросительные трубы для струйной промывки ткани. Камера регенерации включается во время операции выгрузки осадка. Фильтр установлен на раме 1. В камеры суспензия, промывная жидкость и воздух подводятся по коллектору 10 и втулкам 8 (на рис. 10.6 втулка 6), которые при сжатых плитах образуют составную трубу, размыкающуюся в момент выгрузки. Блок слива аналогичной конструкции расположен симметрично блоку подачи на противоположной стороне фильтра. На левой задней стойке смонтирован коллектор для подачи воды под давлепием. [c.293]

    Рассмотренная математическая модель внутридиффузион-ного переноса в гранулах адсорбента предполагает, что массоперенос в твердом теле полностью определяется некоторым постоянным коэффициентом диффузии. Действительно, проникание адсорбата внутрь зерна адсорбента — процесс диффузионный, а под коэффициентом диффузии D понимают количество вещества, диффундирующего в единицу времени через 1 см поверхности при градиенте концентрации, равном единице. Естественно, что нельзя ожидать, чтобы один постоянный коэффициент диффузии описал те явления, которые происходят в процессе переноса адсорбата в таких сложных пористых структурах, которыми обладают гранулы любого промышленного адсорбента. Величина D должна рассматриваться как эффективный коэффициент диффузии, значение которого зависит от структуры пор и вклада в массоперенос различных транспортных механизмов, таких как нормальная или объемная диффузия, молекулярная или кнудсенов-ская диффузия и поверхностная диффузия. Для того чтобы учесть негомогенность структуры адсорбентов, при экспериментальном и теоретическом изучении кинетики адсорбции микропористыми адсорбентами в настоящее время широко используется представление о бипористой структуре таких адсорбентов [18], которое предполагает два предельных механизма массопереноса диффузия в адсорбирующих порах (например, в кристаллах цеолита) и перенос в транспортных порах. [c.50]

    Коэффициент а определяется величиной времени релаксации т,. которая характеризует время осаждения. Принимая во внимание, что частицы пыли больше 4 мкм полностью осаждаются за счет механизма удара, при рассмотрении второй стадии пылеулавливания на решетке для одних и тех же условий величину т можно считать, примерно постоянной. На удельной поверхности пленки жидкости П осаждается Наиу П частиц пыли. При прохождении газовы11 потоком слоя пены высотой с1Н за время из потока осядет- [c.167]

    Такпм образом, при отсутствии защитного механизма утончение пленки при постоянном внешнем давлении резко ускоряется, когда толщина пленки достигает радиуса действия сил притяжения. Разрушение чистых жидких пленок так внезапно, что очень трудно уловить этот момент даже с помощью высокоскоростной фотографии (Чарльз и Масон, 1960Ь). Лишь Шелудко (1962) исследовал толщину, при которой мгновенно разрушаются пленки пены. Микроскопические пленки существуют более продолжительное время, чем толстые, так как последние сильнее подвержены действию внешних помех. Врий (1966) предложил новое обоснование механизма разрыва мыльных пленок. [c.82]

    Поскольку продукты этой реакции химически почти идентичны исходным веществам, то ее тепловой эффект практически равен нулю. Таким путем удается обойти все трудности, связанные с энергетическими соотношениями, за исключением энергии активации. Тримолекулярная реакция, соответствующая уравнению (43), также не противоречит предложенному механизму, так как растворенные молекулы почти все время паходятся в постоянных столюновениях с молекулами воды. Однако сами авторы поставили под сомнс ние справедливость этого механизма согласованного взаимодействия , так как они считают, что из него вытекает не только основной, но и кислотный катализ реакций обмена. Реакцию, катали ируемую кислотами, по аналогии с уравнением (43) можно заннсать в (ВИде [c.213]

    Промежуточная область устойчивости пен, когда концентрация детергентов с с 1, наиболее сложна для исследования, хотя также имеет очень большое значение. В этом случае время утончения пленок соизмеримо с временем существования конечных топких пленок с постоянной толщиной. По мере увеличения концентрации детергента время жизни тонких пленок с постоянной толщиной нарастает, и происходит непрерывный, хотя и довольно резкий, переход от малоустойчивых пен к высокоустойчивым. В этом случае любые реологические эффекты, увеличиваюш,пе время утончения, могут играть важную роль. Кроме того, в этой области (с С(,1) появляется новый, более эффективный механизм устойчивости пен. [c.239]

    Так как в этом случае микротяжи скреп,пяют стенки этих трещин и не дают им раскрыться, то нагрузка все время распределена практически равномерно по сечению (микротяжи принимают долю нагрузки на себя). Поэтому в отличие от трещин разрушения напряжение у вершины трещины серебра по мере ее углубления в материал не возрастает, оставаясь примерно постоянным. Это приводит к простому виду предэкспоненциального члена в уравнении долговечности. В этом случае (см. уравнение в табл. 11.2 к IV механизму разрушения) коэффициент концентрации напряжения р трещин серебра мал и остается практически постоянным при увеличении длины трещины. [c.322]


Смотреть страницы где упоминается термин Постоянная времени механизма: [c.346]    [c.201]    [c.118]    [c.166]    [c.293]    [c.22]    [c.8]    [c.342]    [c.459]    [c.227]    [c.19]    [c.228]    [c.228]    [c.114]   
Теория и проектирование гидро- и пневмоприводов (1991) -- [ c.205 ]




ПОИСК







© 2025 chem21.info Реклама на сайте