Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Обменная полная

    Полная статическая обменная емкость [c.150]

    Все реакции можно разделить на две группы в одних степень окисления атомов остается постоянной — обменные реакции, в других — окислительно-восстановительные реакции — она меняется. Протекание окислительно-вос-становительных реакций в отличие от обменных связано со сдвигом или с полным переходом электронов от одних атомов (ионов) к другим — от восстановителя к окислителю. Пример обменной реакции  [c.83]


    Полная обмен- Полная обмен- [c.111]

    В модели Райса — Рамспергера — Касселя (РРК) для распада молекул предполагается, что полная энергия, распределенная среди п слабо связанных гармонических осцилляторов, составляющих молекулу , имеет полную свободу перераспределения. В этом смысле п — 1 осцилляторов, связанных со слабым осциллятором, выполняют по отношению к нему роль энергетического резервуара. Эта модель была подвергнута критике Слетером [6], который высказал предположение, что процесс передачи энергии между осцилляторами может быть медленным, поэтому скоростью передачи энергии нельзя пренебречь. Как на крайний случай он указал, что осцилляторы, принадлежащие к молекулярным колебаниям различных классов симметрии, не могут обмениваться энергией . Дальнейшее ограничение, налагаемое на обмен энергии, обусловливается дискретностью энергетических уровней квантовой системы. Дело в том, что молекула может изменять свое внутреннее энергетическое распределение только между состояниями, полная энергия которых [c.199]

    По мере того как углеводороды направляются к низу колонны, а насыщенный раствор движется вверх, по всей высоте колонны происходит обмен между молекулами Л и Б в двух фазах. В результате этого обмена и движения фаз происходит полезное перемещение более растворимого компонента А в верхнюю часть колонны, а менее растворимого компонента В — в нижнюю часть. В итоге, если компонент А частично смешивается с растворителем при температуре процесса и колонна содержит достаточное число фракционирующих ступеней, этот компонент можно получить достаточно чистым вверху колонны. Описанный выше процесс соответствует однократной дистилляции с полным орошением фаза растворителя и фаза рафината соответственно аналогичны паровой и жидкой фазам дистилляции. [c.280]

    Объем аварийной вытяжной вентиляции принимается не менее восьми обменов воздуха в час по полному внутреннему объему помещения с учетом [c.132]

    Результаты опытов на разбавленных растворах позволяют заключить, что метод обратного осмоса при очень низких концентрациях электролита (I область) становится малоэффективным. Поэтому для полного удаления солей из воды обратный осмос целесообразно сочетать с дополнительными процессами очистки, например, с ионным обменом. [c.190]


    Партридж и Роу оценили межфазный обмен, исходя из маловероятного предположения о полном перемешивании газа внутри пузыря с газом в окружающем его облаке. Кроме того, на основании опытов с меченым газом они пришли к заключению, что скорость переноса по порядку величин согласуется с рассчитанной для процесса диффузии через пограничную пленку облака . Для определения скорости межфазного газового обмена было предложено следующее уравнение  [c.364]

    Решетка цеолитов составлена из тетраэдров АЮ4 и 5104, имеющих общие углы, но АЮ4 связаны только с 5104 (л >>2). Катионы М легко обмениваются с растворами солей при более или менее полном обмене [c.51]

    Различают полную обменную способность ионита, характеризуемую тем количеством ионов, которое может поглотить [c.12]

    Рациональная конструкция дренажа, обеспечивающая равномерное распределение воды при взрыхляющей промывке фильтра, и равномерный по площади сбор фильтрата также способствуют более полному использованию рабочей обменной способности ионита. Хорошо сконструированный дренаж дает возможность осуществить полное взрыхление ионита, предотвратив образование местных ходов для регенерационных растворов и воды, и тем самым позволяет полностью использовать рабочую обменную способность ионита. [c.25]

    Величина рабочей обменной способности находится, как часть полной обменной способности, по уравнениям  [c.35]

    Джилль (208) в свое время предложил очень простой метод определения испаряемости масел, но, к сожалению, его нелегко стандартизовать. Кружок фильтровальной бумаги определенного сорта, диаметром в 41,27 мм (1 /а дм.), с отверстием по середине в 15,87 jtji < /в дм.) хорошо высушивается до постоянного веса в эксикаторе над серной кислотой. Затем его смачивают 8 каплями Л1асла (0,14—0,15 г), и когда масло совершенно равномерно распределится в порах бумаги, фильтр нагревают определенное время до желаемой температуры и обратным взвешиванием определяют потерю от испарения. Как не трудно видеть, здесь налицо отсутствие конвекционных токов и полный обмен паров и воздуха поэтому результаты получения количественно выше, чем по Бсем другим способам, но выше также, чем в механизмах. Со всем тем, получаемые цифры ближе к действительности. [c.275]

    В том случае, если содержание катионов натрия в исходной воде превышает допустимое содержание их в обессоленной воде или ставится задача наиболее полного удаления катионов из воды, то величину рабочей обменной способности катионита следует определять по формуле  [c.36]

    Достоинства систем автоматического программирования определяются главным образом тем, насколько синтаксически полным и гибким является используемый алгоритмический язык. Поскольку автоматическое программирование призвано облегчить труд программиста по подготовке п отладке программы, при разработке синтаксиса языка учитываются именно эти требования. Необходимо учитывать такие факторы, как простота освоения и использования языка, для чего он должен но возможности приближаться к обычной записи формул, быть компактным и емким в смысле значения отдельных конструкций, иметь немногочисленные и простые правила. Наиболее полное осуществление указанных требований достигается при разработке языка, ориентированного на определенный класс машин, когда учитываются конструктивные особенности машин. Однако обилие алгоритмических языков программирования усложняет обмен готовыми алгоритмами и приводит к необходимости изучения нескольких языков. [c.46]

    Использование изложенной методики позволило установить зависимость статической удерживающей способности от гидродинамических режимов в аппарате и проследить экстремальный характер этой зависимости [И, 14]. Зависимости были получены путем вычитания величины динамической удерживающей способности, определенной как методом отсечки , так и прямым методом из значений полной удерживающей способности, рассчитанных по кривым отклика системы на индикаторное возмущение. Возрастание с увеличением нагрузок по обеим фазам до точки экстремума (лежащей в районе точки подвисания v lv =0,85) объясняется возрастанием активной поверхности насадки по мере увеличения нагрузок по газу и жидкости. Дальнейшее увеличение нагрузок, переводящее систему в более интенсивный гидродинамический режим (Уг/у нв > 0,85), приводит к развитию турбулентности потоков, вовлечению жидкости в застойных зонах в турбулентный обмен и, как следствие, к уменьшению статической удерживающей способности. В режиме развитой турбулентности возникновение застойных зон в насадке маловероятно. Статическая, а также динамическая удерживающая способности, определяемые методом отсечки и прямым методом, в этом режиме принимают примерно одинаковые значения по обоим методам. [c.361]

    Существует три квантовые статистики. Одна из них — полная квантовая статистика (квантовая статистика Больцмана) — применима к тем системам, при изучении которых можно не учитывать или почти не учитывать требования симметрии (локализованные системы, разреженный идеальный газ). При изучении более сложных систем, например газов при очень низких температурах, электронного газа, жидкого Не и ряда других систем, оказалось, что игнорировать требования симметрии уже нельзя. Здесь следует учитывать полную волновую функцию, характеризующую всю систему в целом, которая должна быть по отношению к обмену частиц (см. 5) или антисимметричной (фермионы), или симметричной (бозоны). [c.309]


    Ступень МЗО (см. табл. 139) достигается тогда, когда в смесь углеводородов введено столько хлора и двуокиси серы, что величина гидролизующегося хлора указывает почти на 30%-ный обмен. Ступень М50, или также ступень Н (ступень полусульфохлорида), достигается тогда, когда реакция обмена, характеризуемая гидролизующимся хлором, составляет 50%. Ступень Д, или ступень полного сульфохлорида, указывает на то, что углеводород просульфохлорирован , т. е. величина гидролизующегося хлора дает возможность установить, что превращение достигнуто на 100%. [c.377]

    Неполяризуемый электрод отвечает такому электроду, для которого обмен потенциалопределяющими ионами между металлом и раствором совершается беспрепятственно, что наблюдается при больших токах обмена. Потенциал подобного электрода практически не изменяется под действием внешнего тока, пока последний мал по сравнению с током обмена. Идеально поляризуемым является электрод, у которого обмен ионами полн.эстью или почти полностью заторможен ц ток обмена близок к нулю. Для такого электрода уже ничтожно малый внешний ток будет изменять потенциал. Ртутный электрод в условиях снятия электрокапиллярных кривых ведет себя подобно идеально поляризуемому электроду, хотя ток обмена между металлической ртутью и раствором ее соли в состоянии равновесия очень велик. Это объясняете двумя причинами во-первых, тем, что область потенциалов, в которой снимают<я электрокапиллярные кривые, смещена в отрицательную сторону от равновесноп потенциала ртутного электрода, и по-это.му анодный процесс перехода ионов этути из металла в раствор термодинамически невероятен во-вторых, тем, что электрокапиллярные кривые снимаются в растворах, практически лишенных ионов ртут . В этих условиях катодный процесс перехода ионов ртути пз раствора на металл также невозможен, [c.236]

    Частичный или полный обмен аниона неоднократно проводился путем эквилибрирования органического раствора четвертичной аммониевой соли [Q+X ] с водным раствором Ыа . На основе этих исследований можно построить щкалу липофильности. Клиффорд и Ирвинг [63] установили следующий порядок экстракционной способности ионов, начиная с липофиль-ного иона С1О4 и кончая гидрофильным ионом Р04 , для системы хлороформ/вода  [c.30]

    Марка Полная обменная емкость Удель- ный Насыпная Размер <90Пи Я [c.149]

    В условиях воздействия высоких температур и водяного пара цеолиты ReY даже при полном редкоземельном обмене подвергаются частичной деалюминации  [c.113]

    Таким образом, механизм (XLIII) не может считаться полным. Для более общего случая механизм должен включать участие реагента ZB, который представляет собой источник электрофильной группы Z, как это показано в продукте (В — любая основная группа, которая может переносить Z в ароматическое кольцо. Например, следующий механизм будет представлять обмен водорода на фтористый водород, если принять, что Z =H и B =F ). Общий механизм виден на схеме XLVI. [c.411]

    В обменных реакциях, протекающих в растворах электролитов, наряду с недиссоциированными молекулами слабых электролитов, твердыми веществами и газами участвуют также находящиеся в растворе ионы. Поэтому сущность протекающих процессов наиболее полно выражается при записи их в форме ионно-молекулярных уравнений. В таких уравнениях слабые электролиты, малорастворимые соединения и газы записываются в молекулярной форме, а находящиеся в растворе сильные электролиты — в виде составляющих их ионов. Например, уравнения реакций иейтрализации сильных кислот сильными основаниями [c.146]

    Активацид микросфер. Для активации разбавленный раствор сернокислого алюминия (0,08—0,1 п.) пропускают через слой сырых микросфер. Для лзгчшей обработки процесс ведут при постоянном легком перемешивании воздухом. Продолжительность процесса 12 ч. В результате активации содержание натрия в катализаторе снижается с 5—6 до 0,2% и ниже, а содержание алюминия повышается с 7—9 до 12—13%. Чем полнее замещен натрий, тем выше качество катализатора. Активирующий раствор не должен содержать свободной серной кислоты, так как присутствие ее в самых незначительных количествах препятствует обменной реакции. [c.59]

    Препаративно наиболее важными являются синтезы иодидов и фторидов. Однако техника МФК может быть использована также и для получения хлоридов, бромидов и иодидов, содержащих изотопную метку. Старкс [4] нашел, что полное равновесие С1/з С1 между 1-хлороктаном и На С1 в присутствии четвертичной соли в качестве катализатора достигается при кипении смеси за 5 ч. Аналогичный обмен иод — радиоактивный иод при 100 °С проходит полностью за 5 мин [4]. При обмене химически неэквивалентных групп X и превращение могут лимитировать как равновесие экстракции двух ионных пар Q+X и так и химическое равновесие [c.109]

    Старкс [4] показал, что если перемещивать октанон-2 с 50%-ным раствором N300 в ВгО в присутствии 5% четвертичной аммониевой соли в течение 30 мин при комнатной температуре, то происходит полный Н/В-обмен атомов водорода и у С и у С . Без катализатора (аликват 336 ) за 3 ч обмен водорода на дейтерий проходит только на Ъ% [4]. Трехкратное повторение этой процедуры с 1-ацетилциклогексаном и 1-ацетилцикло-пентаном дает продукты, содержащие более 99% 04 [401]. Этот метод был использован также для дейтерирования более сложного соединения О, в котором дейтерий входил в положения, указанные на схеме 3.92 [402]. [c.215]

    Макроскопическая скорость реакции соизмеримо меньше макроскопической скорости релаксации. При этом микроскопические скорости реакции больше микроскопических скоростей релаксации уже для многих квантовых уровней (а не для некоторых, как было раньше), что означает нарушение равновесного энергетического распределения пе только вблизи порога, но и на нижних колебателып.тх уровнях. Может случиться так, что среди релаксационных процессов имеется процесс, обеспечивающий быстрьп обмен энергией и выравнивание распределения на нижних уровнях. В этом случае распределению по этим состояниям все же можно придать вид равновесной функции Больцмана, н6 не по обычной поступательной температуре Т, а по некоторой температуре Т. Она определяется предварительно из уравнений, учитывающих текущую концентрацию молекул и изменение их энергий в ходе процесса. Тогда уравнения сводятся к обычным Арренну-совым, по содержат не одну, а две температуры, характеризующие как фиктивное полное равновесие, так и фактическое равновесие по быстрой подсистеме. Для реакции мономолекулярного распада (диссоциации) таким быстрым процессом, устанавливающим равновесие, может явиться, например, резонансный обмен колебательными квантами. Зависимость макроскопического коэффициента скорости от значений Т, Т имеет вид [12] [c.98]

    Большое внимание уделено в литературе проскоку газа с пузырями, характерными для неоднородного псевдоожиженного слоя. Если бы между пузырями и непрерывной фазой отсутствовал обмен тазом, то проскок (байнас) был бы полным . С другой стороны, если бы обмен был бесконечно быстрым, то проскока вообще не наблюдалось бы. В реальных условиях обмен обязательно суи -ствует за счет диффузии и, возможно, также конвекции, обусловленной либо сквозным потоком газа через пузырь, либо вихрями за поднимающимся пузырем. [c.289]

    Окислители и восстанов ители. Все реакции можно разделить на две группы в одних реакциях степень окисления атомов остается постоянной, в других она меняется. К первым относятся обменные реакции, некоторые процессы синтеза и распада веществ. В отличие от них протекание окислительно-восстановительных реакций. связано со сдвигом или полным переходом электронов от одних атомов (ионов) к другим — от восстановителя к окислителю, Примером такой реакции является процесс  [c.202]

    Увеличение высоты загрузки ионита в фильтре, помимо того, что позволяет сократить чиqлo устанавливаемых фильтров и тем самым уменьшить стоимость строительно-монтажных работ, дает возможность более полно использовать обменнук> способность ионитов. Эта возможность обусловливается сглаживанием влияния на обменную способность повышенных скоростей фильтрования, крупнозернистости ионита и повышенного солесодержания обессоливаемой воды. [c.25]

    Условно принимаем величину полной обменной способности данного ионита, т. е. величину, соответствующую моменту установления равновесия ионообменной реакции в динамических условиях, как величину лосто янную. Подобное допущение не является строгим, но оправдывается тем, что на величину полной обменной способности данного ионита влияет лишь концентрация извлекаемых из воды ионов. При тех концентрациях ионов, которые обычно имеют место в пресных водах (до 1 ООО—1 200 мг1л), колебания величины полной обменной способности для данного ионита невелики. [c.34]

    По окончании программы экспериментальных исследований информация о результатах эксперимента, хранящаяся в запоминающем устройстве УВМ, входящей в САЭИ, проходит полную логическую и математическую обработку при этом структура САЭИ должна допускать обмен информации УВМ с ИВС, входящей в АСПХИМ. В режиме обработки результатов эксперимента УВМ может выполнять функции терминала или внешнего устройства ввода ИВС и использоваться для оформления документации о результатах эксперимента. [c.120]

    При формулировке метода определения параметров модели будем считать, что располагаем неадсорбируюпщмся индикатором, так что обмен между проточной и застойной частями системы происходит в основном за счет конвекции и диффузии ( 1= 2=А). Неизвестными параметрами модели при этом будут являться число ячеек п, объем проточной части Уг, объем застойной зоны константа скорости обмена к. Применение в качестве индикатора радиоактивных изотопов позволяет измерить на выходе из аппарата две функции распределения одну в проточной зоне и вторую — по средней концентрации в полном сечении аппарата. Для каждой из этих кривых можно найти первый начальный и второй центральный моменты распределения. Тогда для определения неизвестных параметров модели следует воспользоваться уравнениями (7.85) и (7.91), где надо положить к =к =к, а также уравнениями (7.94) и (7.95). Решая совместно эти уравнения, получим [c.387]

    Математическую модель нестационарного процесса абсорбции в насадочном аппарате построим так, чтобы она отражала три основных фактора, наиболее важных в общем динавлическом поведении процесса 1) неравномерность распределения по времени пребывания элементное потока в аппарате, 2) распределенность в пространстве и времени основных гидродинамических параметров процесса удерживающей способности, расхода жидкости в колонне, перепада давления, 3) наличие полной замкнутой цепи обменных процессов в насадочном аппарате газовая фаза—проточная зона потока жидкости—застойная зона потока жидкости—газовая фаза с количественным выражением интенсивности обменных процессов всех звеньев замкнутой цепи. [c.415]

    В двух зонах промежуточной и нристеночной. Однако характер нисходящего движения этих зон резко различен между собой. Причина этого кроется в распределении газа по объему фонтанирующего слоя большая часть газа проходит через зону ядра, меньшая — через промежуточную зону, и для пристеночной зоны характерно практически полное отсутствие газовых струй. Вследствие этого масса ядра значительно меньше массы промежуточной зоны, которая, в свою очередь, меньше массы пристеночной зоны. Скорость частиц ядра более чем на порядок превышает скорость в пристеночной зоне, а в промежуточной зоне она лишь в несколько раз ниже, чем в ядре. Наличие неравномерного поля скоростей способствует интенсивному обмену частиц материала между зонами. [c.255]

    Рассмотрим вначале вопрос о восстановлении равновесного распределения. молекул но энергиям в отсутствии химической реакции. Основой для вывода уравнений, определяющих кинетику изменения функций распределения, служат соотношения баланса между числом частиц, выбывающих из заданного состояния и приходящих в это состояние в результате столкновений. Рассмотрим для определенности обмен энергией между молекулами д и b двухкомпопснтной газовой смеси. Пусп. г и / обозначают заселенности квантовых состояний I и / молекул А и В, нормированные к полному числу молекул [А и [В н единице объема [c.43]

    Если сталкивающиеся молекулы притягиваются достаточно сильно, то при столкновении возможно образование долгоживущего комплекса, раснад которого, следующий за полным перераспределением энергии, приводит вновь к исходным молекулам, но уже в других колебательных состояниях. За образование комплексов мо кет быть ответственно сильное ван-дер-ваальсово притяжение [253], водородная связь [5171 или обменное взаимодействие [472]. В последнем случае, когда анергия связи комплекса особенно велика, можно ожидать полного статистического перераспределения энергии между степенями свободы комплекса. Что каса( Т1>[ вероятностей колебательных переходов, то они могут быть рассчитаны при атом в рамках статистической теории реакций (см. 21). [c.90]

    Во-вторых, при применении микросостояний для характеристики изучаемой системы нужно учесть неразличимость частиц, выражающуюся в виде требований перестановочной симметрии, накладываемых на волновые функции (см. 1 и 5). В природе существуют по отношению к обмену частиц только двоякого рода частицы — бозоны и фермионы (см. 5). Состояния систем, построенных из бозонов, описываются полными симметричными функциями, а состояния систем, построенных из фермионов, — полными антисимметричными функциями. Естественно, что из-за указанных требований симметрии в системах, построенных из нелокализованных бозонов или фермионов (такие частицы будут неразличимы из-за отсутствия локализации ), будет реализоваться меньшее число микросостояний, чем при отсутствии требований симметрии. Это меньшее число реализующихся микросостояний будет различным для систем, построенных из бозонов, и систем, построенных из фермионов, и это обстоятельство существенным образом скажется при вычислении средних, в частности, при вычислении термодинамических свойств. Так, термодинамические свойства Бозе-газа (газ является примером нелокализован-ной системы) будут отличаться от термодинамических свойств Ферми-газа. [c.287]


Смотреть страницы где упоминается термин Обменная полная: [c.84]    [c.153]    [c.274]    [c.300]    [c.335]    [c.353]    [c.13]    [c.35]    [c.35]    [c.52]    [c.415]   
Хроматография неорганических веществ (1986) -- [ c.26 ]




ПОИСК







© 2025 chem21.info Реклама на сайте