Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Химия термо

    Модифицирующие добавки вводят в П. м. в небольших кол-вах для регулирования состава, структуры и св-в полимерной ( зы или границы раздела фаз полимер-наполнитель. Для регулирования вязкости на стадиях получения и переработки П. м. используют инертные или активные р-рители, разбавители и загустители, для снижения т-р стеклования, текучести и хрупкости-пластификаторы, для повышения хим., термо- и светостойкости-антиоксиданты, термо- и светостабилизаторы, для снижения горючести-антипирены, для окрашивания-пигменты или красители, для снижения электризуемости - антистатики, для улучшения смачивания наполнителя и повышения адгезионного взаимодействия полимер - наполнитель используют ПАВ и аппретирующие ср-ва (см. Текстильно-вспомогательные вещества). По типу полимерного компонента и характеру физ. и хим. превращений, протекающих в нем при получении и переработке и определяющих способ и условия последних, п. м. подразделяют на два принципиально различных класса - термопласты и реактопласты. [c.564]


    Примечание. М.И. Анализ жидкой фазы хим. Анализ твердой фазы хим., термо- [c.848]

    Примерами предикатов могут служить выражения Рг = больше х, 2), Рг2 = равно ((х + 3),у), Рг = больше (х, 3), Рг = меньше (у, х), где X, 3 —натуральные числа. При замещении переменных на значения х = 2 и у = 5 получаем Pz-j = Т Рг = F Рг = Г. Любые факты в химии и химической технологии можно записать в виде истинных /г-арных предикатов, т.е. /г-арных отношений, которые отображают либо свойства некоторого объекта, либо определенные отношения между конечными сущностями — аргументами или термами  [c.144]

    Термохимические расчеты. Основываясь на законах термо химии и пользуясь данными термохимических таблиц, можно производить расчеты тепловых эффектов многих реакций, а также вычислять теплоты образования различных соединений. [c.12]

    Чаще всего в результате химических реакций выделяется или поглощается тепловая энергия. Поэтому раздел химии, изучающий энергию химических реакций, исторически стал называться термо- [c.141]

    И. способствует улучшению однородности смесей (иапр., произ-во СК) ускорению и повышению глубины протекания гетерог. хим. р-ций (в произ-ве минер, удобрений, ультрамарина и др.) повышению интенсивности сочетаемых с ним др. технол. процессов (перемешивание, сушка, обжиг, хим. р-ции) снижению применяемых т-р и давлений (напр., при варке стекла) улучшению физ.-мех. св-в и структуры материалов и изделий (твердые сплавы, бетон, керамика, огнеупоры и т. п.) повышению красящей способности пигментов и красителей, активности адсорбентов и катализаторов переработке полимерных композиций, включающих высокодисперсные наполнители (напр., сажу, слюду, хим. и иные волокна), отходов произ-ва, бракованных и изношенных изделий (резиновые шины, термо- и реактопласты и др.) и т. д. [c.180]

    Применяют И. 6. га отвердители клеев, лаков и красок (в т.ч. водорастворимых и порошковых), компоненты пропиточных составов для бумаги, хим. волокон (гл. обр. полиэфирных) и тканей, как вулканизующие агенты и модификаторы, улучшающие термо- и износостойкость, электроизоляционные и др. св-ва разл. полимеров, в произ-ве полиуретанов. Т-ра переработки композиций зависит от типа И. б. и лежит в интервале 100-180 °С. [c.208]

    Особое место среди стекол занимают фотохромные (см. Фотохромизм) стекла. Выделяют также кварцевые стекла, уникальные по термо- и хим. стойкости, огнеупорности и др. св-вам. Стеклообразный ЗЮ -осн. компонент кварцевых оптич. волокон для протяженных волоконно-оптич. линий связи такие волоконно-оптич. материалы характеризуются миним. оптич. потерями на поглощение ( 10" см" ). Для линий протяженностью 10-100 м используют также оптич. волокна на основе поликомпонентных стекол и полимеров (оптич. потери 10 — 10 см" ). [c.392]


    Хим-, термо-, атмосферо-, светостойкость и совместимость с разл. пленкообразователями определяются св-вами отдельных пигментов, входящих в состав смесей. Благодаря высокой укрывистости (7-15 г/м ) и хорошей красящей способности в 3. с. можно вводить 50-75% по массе наполнителей (барит, микробарит, кальцит, мел, тальк и др.). Во избежание расслаивания в краски и эмали добавляют ПАВ (стеарат Са, кремнийорг. соед.). [c.169]

    СП. спектроскопия, спектрометрия текст, текстильное производство терм, термодинамика, теплотехника уст. устаревший термин УФ ультрафиолетовый фарм. фармакология ФНИ Французский нефтяной институт фотохим. фотохимия хром, хроматография жсп. экспериментальный процесс (находящийся в стадии технологического изучения и опытно-заводской проверки) ЭЛ. электротехника ЭЛ. хим. электрохимия ЯМР ядерно-магни1ный резонанс [c.10]

    Paneje в химии широко использовали калорию как единицу энергии. Термо.химическая калория, определяемая как 4,184 Дж, приблизительно равна количеству энергии, необходимой для нагревания 1 г воды на ГС. Большая калория (ккал) равна Ю кал. Очень полезно запомнить следующие коэффициенты пересчета 1 кал = 4,184 Дж, 1 ккал = 4,184 кДж. [c.5]

    Основы химической те]змоданамики. Основные понятия и первый закон 1 ер м о динамики. Термо.химия. Второй закон термодинамики. Термодинамические потеш(иалы и харакзерисзические функции. Движущие силы процессов. Вычисление критерия самопроизвольности процессов и равновесие системы. [c.8]

    Авторы настоящего пособия стремились избежать характерной для большинства аналогичных пособий концентрации внимания на соединениях -металлов. В книгу введен раздел, посвященный физическим методам исследования координационных соединений, не рассмотренным в ранее изданных учебниках. Необходимость такого раздела обусловлена уникальными возможностями, которые открывают эти методы при исследовании строения и свойств комплексов, а также равновесий комплексообразования в сложных многокомпонентных системах. В книге отражены итоги развития науки в области координационной химии за последние десятилетия рассмотрена химия макроциклических и металлорганических соединений, новые методы синтеза комплексов. Более полно, чем в предыдущих изданиях, охвачены имеющиеся подходы к интерпретации материала в химии координационных соединений включен параграф о методе молекулярной механики, приведено описание энергетики частиц с помощью термов, которое необходимо для понимания спектральных методов исследования. Обсуждены особенности комплексообразования в ра личных агрегатных состояниях. Разделы, в которых рассматриваются основные типы комплексных соединений и методы синтеза, иллюстрированы большим количеством примеров. [c.3]

    Частично заселение экстравалентного уровня (п. 6) также ослаблено и в этом заключается резкое отличие кислорода от серы и ее гомологов. Экстравалентные внешние электронные вакансии энергетически так далеки от типичных для 2-го периода заселенных 25-и 2 -термов, что их значение для химии кислорода незначительно. [c.194]

    Широко применяются в химической кинетике радиоспектроскопические методы, в первую очередь электронный парамагнитный резонанс (ЭПР) и ядерный магнитный резонанс (ЯМР). Использование метода ЭПР, открытого русским ученым Е. К- Завойским в 1944 г., позволило выявить большую роль радикалов в различных химических и биологических процессах, подробно изучить их свойства и измерять скорости их превращений. Именно благодаря широкому использованию метода ЭПР в настоящее время стали хорошо понятны механизмы и закономерности многих радикальных реакций, в частности практически важных процессов окисления, полимеризации, термо- и фотодеструкции полимеров, радиационных процессов. Методы ЭПР и ЯМР позволяют не только изучать структуру веществ и находить их концентрации, но и непосредственно определять скорости химических реакций, поскольку ширина резонансных линий определяется временем жизни спиновых состояний и соответственно скоростью их химических превращений. В последние годы благодаря применению неоднородных магнитных полей для измерений и ЭВМ для обработки получаемой информации появилась возможность изучения радиоспектральными методами пространственного распределения веществ в негомогенных непрозрачных объектах (томография) и их превращений, открывающая принципиально новые возможности в химии, биологии и медицине. Методы химической поляризации ядер и электронов позволяют анализировать механизм химических реакций и устанавливать наличие парамагнитных интермедиатов даже в тех случаях, когда они столь лабильны, что их существование не может быть обнаружено никакими иными методами. [c.4]

    Понятие электроотрицательность зародилось в химии очень давно (см. [135]), одиако первая количественная шкала ЭО была дана Полингом [133] только в 1932 г. Он представил разницу энергий Е) реальной и чнсто ковалентной связи атомов А и В в виде двух термов  [c.87]


    Это означает, что СЫ вызывает наибольшее расщепление -термов, 1 — наименьшее, а Н О—промежуточное. Промежуточное положение воды в этом ряду имеет большое значение для химии процессов комплексообразования в водных растворах, поскольку ионы металлов в водных растворах обязательно гидратированы, т. е. представляют собой аквакомплексы. При образовании комплекса в таком растворе молекулы воды гидратированного иона замещаются другими лигандами в соответствии с положением их в ряду. Лиганды, расположенные в этом ряду правее воды, будут иметь меньшую возможность вытеснить ее из аквакомплекса, а лиганды, расположенные левее,—большую. Однако это не означает, что комплексы с лигандами, расположенными в ряду слева, будут обязательно прочнее комплексов, образованных лигандами правой стороны этого ряда. Речь идет лишь о величине дополни- [c.283]

    ГЕССА ЗАКОН тепловой эффект р-ции зависит только от начального и конечного состояний системы и не зависит от ее промежут. состояний. Является выражением закона со-храпсния энергии для хим. систем и следствием первого начала термодинамики, однако был сформулирован ранее первого начала. Справедлив для р-ций, протекающих при пост, объеме или при пост, давлении. Для вычисления тепловых эффектов р-ций, в т. ч. практически неосуществимых, составляют систему термо хим. ур-ний, представляющих собой ур-ния р-ций, записанные совместно с соответствующими тепловыми эффектами (напр., изменениями энтальпии АН°). Так, расчет стандартной теплоты образования СО при 298,15 К сводится к решению системы из двух ур-ний  [c.129]

    Полимерные пленочные материалы, под ред. В. Е. Гуля, М., 1976. Л. П. Перепечкин. ПЛЕНКООБРАЗУЮЩИЕ ВЕЩЕСТВА (пленкообразую щие, пленкообразователи), основные компоненты всех лакокрасочных материалов, обусловливающие формирование прочной пленки при нанесении этих материалов на твердую пов-сть. Использ. преим. в виде р-ров в орг. р-рителях, реже — дисперсий в воде или орг. р-рителях и др. Наиб, распространенные П. в.— термореактивные синт. смолы (алкидные, феноло-формальд., эпоксидные, кремнийорг. и др.). Примен. также сравнительно низкомол. термоплас тичные полимеры (напр., эфиры целлюлозы, сополимеры виниловых мономеров, нек-рые полиакрилаты) и ограниченно — растит, масла (см. Олифы), производные канифоли, битумы. Пленкообразование термореактивных смол и высыхающих растит, масел сопровождается хим. р-циями (т. н. превращаемые, или необратимые, П. в.). Термопластичные П. в. образуют пленку в результате физ. процессов — улетучивания р-рителя или дисперсионной среды (непревращаемые, или обратимые, П. в.). Пленки превращаемых П. в. превосходят пленки непревращаемых по мех, прочности, термо-, атмосферо- и химстойкости важное достоинство непревращаемых П. в,- быстрое высыхание при обычных т-рах. Наяб. перспектявны П. в., на основе к-рых м. б. получены лаки, содержащие в качестве растворителя реакционноспособный мономер (например, полиэфирные лаки), а также водоразбавляемые и порошковые материалы. [c.448]

    Теоретич. база Т. х. — начала термодинамики (см. Первое начало термодинамики, Второе начало термодинами- ки, Третье начало термодинамики) и их следствия, к-рыц, в Т. X. придается форма, наиб, удобная для решения хим, проблем. Соврем. Т. х. включает в себя также нек-рые частные обобщения опытных данных, молекулярнЬ1е мо- дели и спец. методы (законы предельно разбавленных раст-,] воров, модель идеального газа, метод активности термо-, динамической и др.). [c.567]

    Д.-исходный продукт в произ-ве антиоксидантов для полимеров стабилизатор термо- и атмосферостойкости нитратов целлюлозы, в т. ч. пироксилиновых порохов, промежут. продукт в синтезе триарилметановых и азокрасителей, инсектицидов ингибитор коррозии мягких сталей используется в аналит. химии для обнаружения NOJ, NO3, lOj и др. окислителей, как окислит.-восстановит. индикатор ( = + 0,75 В). [c.95]

    Для повышения качества окрасок хим. волокна перед краи1ением подвергают отварке. Триацетатные ткани часто обрабатывают в щелочном р-ре для создания на пов-сти слоя гидратцеллюлозы толщиной 1-2 мкм, понижающего электризуемость. Ткани из синтетич. волокон обычно термо-фиксируют (в расправленном виде подвергают действию высоких т-р), что снимает внутр. напряжения и повышает равномерность окрашивания. Ткани, окрашиваемые в светлые и яркие тона, подвергают белению. [c.501]

    Ограничения внутр. вращения количественно описываются в терминах поворотной изомерии (см. Внутреннее вращение молекул). Для фрагмента М., построенной из атомов углерода, соединенных простыми связями, схема энергетич. барьеров внутр. вращения изображена на рисунке. Степень свободы этого вращения определяет гибкость М., с к-рой связаш>1 каучукоподобная эластичность, способность полимеров к образованию надмолекулярных структур, почти все их физ. и мех. св-ва. Разница энергий Ае между минимумами на кривой зависимости внутр. энергии Е от угла вращения ф определяет термодинамич. (статич.) гибкость М., т. е. вероятность реализации тех или иных конформаций (напр., вытянутых, свч>нутых), размер и форму М. величины энергетич. барьеров АЕ определяют кинетич. (динамич.) гибкость М., т.е. скорость перехода из одной конформации в другую. Величины энергетич. барьеров зависят от размеров и характера боковых радикалов при атомах, образующих хребет цепи. Чем массивнее эти радикалы, тем выше барьеры. Конформация М. может изменяться и под действием внеш. силы (напр., растягивающей) податливость М. к таким деформациям характеризуется кинетич. гибкостью. При очень малых гибкостях, напр. в случаях лестничных полимеров или наличия действующей вдоль цепи системы водородных или координац. связей (см. Координационные полимеры), внутр. вращение сводится к относительно малым крутильным колебаниям мономерных звеньев друг относительно друга, чему соответствует макроскопич. модель упругой плоской лиггы или стержня. Число возможных конформаций М во-растает с увеличением степени полимеризации, и термо/(нна шч. гибкость по-разному проявляется на коротких и ДJIИHHЫX участках М. Это можно понять с помощью др. макроскопич. модели-металлич. проволоки. Длинную проволоку можно скрутить в клубок, а короткую, у к-рой длина и размер в поперечном направлении соизмеримы,-невозможно, хотя физ. ее св-ва те же. Непосредств. численная мера термодинамич. гибкости (персистентная длина 1) ог деляется выражением / = 1ое р(А /кТ), где Де > О, 10 м (т.е. порядка длины хим. связи), к-постоянная Больцмана, Т-т-ра. Если контурная диина, т.е. длина полностью вытянутой М. без искажения валентных углов и связей, равна Ь, то Ь< I соответствует ситуации с короткой проволокой, и гибкость просто не может проявляться из-за малого числа допустимых конформаций. При Ь I М. сворачивается в статистич. клубок, среднеквадратичное расстояние между концами к-рого при отсутствии возмущающих факторов пропорционально / 2 (Р-степень полимеризации). [c.636]

    В большинстве случаев в М участвуют две или более фаз, в к-рых концентрации целевого компонента при равновесии различаются При взаимод двух фаз в соответствии со вторым началом термо 1инамики их состояние изменяется в направлении достижения равновесия, к-рое характеризуется равенством т-р и давлений фаз, а также равенством хим потенциалов каждого компонента в сосуществующих фазах Движущая с II па переноса к-л компонента из одной фазы в другую - разность химических потенциалов этого компонента во взаимодействующих фазах Переход компонента происходит в направлении убывания его хим потенциала М осуществляется также под действием градиентов электрич потенциалов (при электрофорезе, в электрохим процессах) т-ры (напр, в термодиффузионной колонне для разделения изотопов) и др Однако на практике движущую СИЛ) М обычно выражают через градиент концентраций, что значительно упрощает связь между скоростью процесса и составом технол потоков В ряде случаев использование концентрац движущей силы можно обосновать теоретически [c.654]

    Н.-мономерные звенья и промежут. продукты биосинтеза нуклеиновых кислот и нуклеотидкоферментов (см. Коферменты), участники мн. др. процессов в обмене в-в (см., напр., Аденозинфосфорные кислоты), исходные в-ва для хим. и хим.-ферментативного синтеза олиго- и полинуклеотидов. Они широко применяются в биол. исследованиях. Так, мн. нуклеозид-5 -трифосфаты, модифицированные по моносаха-ридному остатку (с заменой гидроксила в положении 3 на атом Н, др. атом или группу), включаются с помощью полимераз в цепь нуклеиновой к-ты, обрывая ее рост (терми-нация цепи). Благодаря этому такие Н. широко используют при выяснении первичной структуры нуклеиновых к-т (метод Сенгера). [c.305]

    Маслоемкость-кол-во масла (г), необходимое для смачивани и превращения 100 г порошка П. в нетекучую пасту. П. характеризуют также по цвету, его оттенку, яркости И чистоте тона, светостойкости, устойчивости к хим. реагентам и орг. р-рителям, фотохим. активности, термо- и миграционной устойчивости, диспергируемости и др. Все эти св-ва при одинаковом хим. составе зависят от кристаллич. структуры, формы и размера частиц П. [c.510]

    По происхождению различают природные П. (напр,, высыхающие растительные масла, смолы природные, гл. обр. канифоль и шеллак) и синтетические П. (алкидные, амино-и феноло-формальд., эпоксидные, полиэфирные, перхлорви-ниловые смолы, полиакрилаты и ми. др.). Наиб, зиачение имеют синтетические П., к-рые обеспечивают получение покрытий, обладающих более стабильными и разнообразными характеристиками, чем природные П. Кроме того, синтетические П. могут придавать покрытиям спец. св-ва, напр, термо- и хим. стойкость, отсутствующие у покрытий из природных П. Синтетические П. почти полностью вытеснили природные напр., растит, масла применяют преим. в произ-ве алкидных смол, а также как пластифицирующие добавки к синтетическим П., ограниченно-в качестве П. [c.574]

    Соотношения (1) и (2) являются мат. выражением адиабатического приближения, в рамках к-рого сначала решается электронное ур-ние (2), а затем найденный электронный терм используется в качестве потенциальной энергии системы в ур-ниях движения с ядерным гамильтонианом (1). Т. обр., понятие ППЭ связано с разделением электронного и ядерного движений, к-рое возможно благодаря тому, что в большинстве хим. систем ядерные движения гораздо медленнее электронных. В нек-рых случаях условия разделе-Ю1Я электронных и ядерных переменных нарушаются (напр., в области сближения электронных термов) и тогда состояние системы не м. б. охарактеризовано с помощью единственной ППЭ (см. Яна Теллера эффекты). [c.592]

    ПНБИ превосходят ПББИ и др. гетероциклич. полимеры (напр., полиимиды, полибензимидазолы) по огие-, тепло-, термо-, хим. и абляционной стойкости. На воздухе наиб, термостойкие ПНБИ практически не деструктируются при 400 °С в течение 10 ч. ПНБИ применяют в оси. для изготовления огне- и термостойких волокон, к-рые мож- [c.611]


Библиография для Химия термо: [c.177]    [c.192]   
Смотреть страницы где упоминается термин Химия термо: [c.72]    [c.231]    [c.31]    [c.113]    [c.26]    [c.433]    [c.433]    [c.12]    [c.42]    [c.89]    [c.98]    [c.160]    [c.349]    [c.413]    [c.451]    [c.456]    [c.468]    [c.539]    [c.569]    [c.605]   
Аккумулятор знаний по химии (1977) -- [ c.11 ]

Аккумулятор знаний по химии (1985) -- [ c.11 ]




ПОИСК





Смотрите так же термины и статьи:

Термит

Термы



© 2025 chem21.info Реклама на сайте