Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Излучение химическое действие

    Дозы и интенсивность излучений, с которыми приходится иметь дело при работе с котлами и при последующих процессах отделения плутония и продуктов деления от исходного урана, намного превосходят интенсивность всех известных до сих пор естественных источников излучений. В понятие излучения в том смысле, как оно здесь использовано, входят также частицы с высокой энергией. Излучения, химическое действие которых необходимо было исследовать, включали -частицы, у-лучи, быстрые нейтроны, продукты ядерного распада и др. В качестве источников излучения применялись циклотроны, генераторы Ван-де-Граафа, бетатроны, рентгеновские трубки и котлы. Обнаружен новый эф кт изменения свойств твердых тел под влиянием облучения. Изложены типичные результаты действия облучения на твердые тела, воду и органические соединения. Первым важным процессом при радиационно-химических реакциях, отличным от простого возбуждения молекул, является разряд ионов. Последующие химические процессы зависят от природы среды. Характер радиационно-химических реакций определяется, повидимому, следующими тремя основными положениями правилом Франка-Кондона, принци- [c.76]


    Как впервые показано Линдом [32], основное химическое действие а-излучения на метан или другие углеводороды состоит в их разложении с выделением водорода. [c.86]

    ХИМИЧЕСКОЕ ДЕЙСТВИЕ ИЗЛУЧЕНИЙ БОЛЬШОЙ ЭНЕРГИИ (РАДИАЦИОННАЯ ХИМИЯ) [c.257]

    Гл. XI. Химическое действие излучений большой энергии [c.258]

    Первичное химическое действие инициирующего излучения приводит к образованию радикалов Н и ОН по схеме [c.265]

    МЕТОД МЕЧЕНЫХ АТОМОВ И ХИМИЧЕСКОЕ ДЕЙСТВИЕ ИЗЛУЧЕНИИ [c.541]

    В этой главе будут рассмотрены вопросы, относящиеся к методу меченых атомов, реакциям изотопного обмена, химическому действию радиоактивных излучений и пр., причем предполагается, что основные сведения о явлениях радиоактивности, природе радиоактивных излучений, ядерных реакциях и пр. известны из курса физики. [c.541]

    Химическое действие рентгеновских лучей и ядерных излучений. Рассмотрение этих вопросов относится к области ра- [c.550]

    К области фотохимии ( 208) относится рассмотрение химических реакций, возбуждаемых видимым светом или инфракрасными и ультрафиолетовыми лучами, т. е. практически колебаниями с длинами волн от 1000 до 10 ООО А. Энергия этих колебаний примерно 1,2—12 эв. При поглощении этих излучений усиливается вращательное движение молекул или колебания атомов и атомных групп, составляющих молекулу, и могут быть возбуждены электроны наружных оболочек атомов. Под действием излучений с меньшей длиной волны может происходить и отделение наиболее слабо связанных электронов. В отличие от этого, при поглощении рентгеновских лучей, обладающих много большей энергией, возбуждаются или отделяются электроны внутренних оболочек атома. Поэтому химическое действие рентгеновских лучей по своему характеру сильно отличается от действия видимого света или инфракрасных и ультрафиолетовых лучей. [c.551]

    Изучение химического действия излучений с большой энергией привело к открытию ряда интересных соотношений. Естественно, что относительно более простые закономерности наблюдаются для реакций в газах. [c.553]

    Излучения высоких энергий обладают сильным химическим действием, однако различие и специфика их действия большею частью обусловлены вторичными процессами, так как первичными являются процессы отделения или возбуждения внутренних электронов. Например, при воздействии на вещество а-частиц последние захватывают электроны, в результате чего образуются электронейтраль-ные атомы гелия и однозарядные ионы. При взаимодействии [c.364]


    Первичное химическое действие излучения на воду приводит к образованию свободного радикала гидроокисла и атома водорода по схеме [c.364]

    Радиационная химия. Достаточно сильное воздействие на молекулы реагирующих веществ оказывают ядерные излучения (у-излу-чение, поток нейтронов и др.) их химическое действие изучается в радиационной химии. Ядерные излучения можно использовать для улучшения свойств полимеров, для вулканизации каучуков без добавок серы и т. п. Под действием ионизирующих излучений кислород превращается в озон, алмаз — в графит, SO2 в присутствии кислорода — в SO3 и т. п. [c.125]

    Энергия излучений, применяемых в радиационной химии, имеет порядок 10 —10 эв. Известно также радиационно-химическое действие излучений и с более низкими энергиями (например, протонов с энергиями 200—800 эв). С другой стороны, исследуется действие излучений с энергией 20 Мэе и выше ( жесткие 7-лучи, быстрые а- и р-частицы, нейтроны и др.). [c.393]

    Радиационно-химические реакции. Достаточно сильное воздействие на молекулы реагирующих веществ оказывают ионизирующие излучения (7-излучение, поток нейтронов и т. д.), их химическое действие изучается в радиационной химии. На базе исследований радиационно-химических реакций возникла радиационно-химическая технология, достоинством которой является высокая скорость реакций при сравнительно низких давлениях и температурах, возможность получения материалов высокой чистоты и др. К наиболее важным процессам радиационнохимической технологии относятся полимеризация мономеров, вулканизация каучука без серы, сшивание полимеров, улучшение свойств полупроводников, очистка вредных газовых выбросов и сточных вод и др. [c.121]

    Эти процессы можно охарактеризовать следующими временами Передача воде энергии ионизирующего излучения происходит за 10 —10 с при этом возникают возбужденные молекулы воды, ионы Н2О+ и свободные электроны. Последние, обладая значительной энергией, ионизируют и возбуждают еще несколько молекул воды. В конечном итоге в случае гамма-, рентгеновского или электронного облучений образуются отдельные изолированные группы ионизированных и возбужденных молекул ( шпоры ), где и разыгрываются первичные акты химического действия ионизирующего излучения. В случае тяжелых частиц шпоры расположены близко друг к другу и сразу же после своего появления сливаются в сплошную цилиндрическую колонку. [c.594]

    Химическое действие радиоактивных излучений. Исследованием химических изменений, возникающих в веществе под действием ядерных излучений, занимается радиационная химия. Вскоре после работ Беккереля была обнаружена способность излучений радия разлагать воду на водород и кислород. В последующие годы расширились работы, посвященные действию излучений радиоактивных элементов на различные вещества. Было установлено, что под действием излучений возникают ионы и радикалы. Часто наблюдается протекание цепных реакций. Современный этап радиационной химии связан с появлением мощных источников ядерных излучений. Решение прикладных задач по эксплуатации ядерных [c.407]

    Одной из самых простых радиационно-химических реакций является радиолиз воды. Радиолиз — это химическое разложение вещества под действием ионизирующих излучений. Под действием ионизирующего излучения молекула воды подвергается следующим первичным превращениям - [c.102]

    Исходя из характера взаимодействия излучения с материей и способа измерения, методы обнаружения излучения радиоизотопов можно разделить на следующие ионизационные, основанные на ионизирующем действии излучения сцинтилляционные, основанные на люминесценции некоторых облученных веществ радиографические, основанные на химическом действии излучения на фотографический материал. [c.645]

    Другие методы выделения аналитического сигнала. Для выделения заданного интервала энергий мо-г>т применяться фильтры. Действие рентгеновских фильтров основано на характерной зависимости поглощения рентгеновского излучения химическими элементами от энергии или длины волны (рис. 14.78). Поглощение монотонно падает с увеличением энергии излучения, причем плавный ход этой функции нарушается скачками поглощения, соответствующими потенциалам ионизации К-, Ь- и других оболочек атома. Подобрав подходящий материал и толщину фильтра, можно достаточно полно отделить регистрируемую линию от более жесткого излучения. Такие фильтры, использующие скачки поглощения, получили название краевых или селективных. Они представляют собой тонкие слои из различных химических элементов. На рис. 14.84 приведены кривые пропускания некоторых фильтров. Как видно из рисунка, молибденовый фильтр позволяет разделить К -линии 8 и С1, серебряный — излучение К и Са, титановый — отделить излучение Т1 и V от рассеянного излучения Мп, обусловленного К-источником Ре, никелевый — обеспечить раздельное определение Си и 2п, обычно совместно присутствующих в полиметаллических рудах. [c.19]


    У кроликов при поступлении больших доз Ре в течение первого месяца выявлены изменения процессов кроветворения. Повышается количество НЪ, достигающее максимума к 6 мес. Указанные изменения обусловлены не действием излучения Ре, а наличием стабильного железа во вводимом растворе. После трех месяцев начинает увеличиваться средний диаметр эритроцитов (максимум наблюдается к 6 мес.). Изменения эритропоэза при хроническом поступлении Ре являются результатом комбинированного радиационного и химического действия этого элемента. [c.270]

    Экспериментально доказано, что одно химическое действие не является прямой и непосредственной причиной излучения электронов, возможно, что вызванное химическим путем излучение электронов из щелочных металлов является скорее исключением. Даже исследователи, склонные признавать химическую точку зрения, указывают, что обычно наблюдаемое излучение электронов может быть приписано взаимодействию между горячим металлом и малейшими следами остаточного газа, а не прямому результату химического действия. В случае вольфрама все газы, оказывающие химическое действие на металл, снижали, а не увеличивали излучение электронов. Ленгмюр [252] установил, что водород вызывает огромное снижение излучения электронов из вольфрама он приписывал это скорее действию паров воды, образовавшихся в результате вторичных реакций, чем непосредственному действию водорода. Была попытка доказать, что излучение электронов может происходить в результате прямого химического действия. [c.249]

    В книге описываются свойства ионизирующих излучений и вызываемые этими излучениями химические процессы. Рассмотрены общие вопросы радиационной химии полимеров. Дано статистическое толкование процессов образования поперечных связей к деструкции молекул при воздействии ионизирующего излучения на различные полимеры. Подробно обсуждено действие излучений на полимеры углеводородов, на акрилаты и метакрилаты, смешанные кислородсодержащие полимеры, хлор- и фторсодержащие полимеры, диолефины. Освещен вопрос [c.4]

    В книге имеюп ся две дополнител1,пые главы Метод меченых атомов и химическое действие излучений и Полимеры и пластмассы . [c.2]

    Настоящий учебник физической химии предназначен для студентов выси]их технических учебных заведений нехимичсских специальностей. При написании этого учебника был использован материал книги автора Курс физической химии , изданной в 1956 г. как учебник для химических вузов. В соответствии с новым назначением книга была значительно сокращена и сун1ественно переработана в текст включена глава Коллоидное состояние , посвященная главным образом лиофобным коллоидам, а также две дополнительные главы Метод меченых атомов и химическое действие излучений и Высокополимеры и пластмассы . В последней из них, в соответствии с основным назначением книги для нехимических втузов, главное внимание было обращено не на процессы получения высокополимеров и пластмасс, а на особенности их внутреннего строения и свойств, наиболее существенные для применения полимерных материалов. По той же причине из всех видов полимерных материалов более подробно рассмотрены различного рода пластические массы. [c.11]

    Часто перед окном фотоэлемента помещают раствор вещества (эритрозин, сульфородамин, родамин и т. п.), сохраняющего квантовый выход флуоресценции в широком интервале длин волн. Для измерения интенсивности света удобными оказываются химические актинометры. При использовании химических актинометров интенсивность света источника определяется по химическому действию излучения на вещество с заранее известным квантовым выходом. [c.145]

    Эффективность химического действия излучений характеризуют величиной радиационно-химического бьао(За, представляющего собой число превратившихся (или образовавшихся) молекул вещества на 1,60-10 Дж (100 зВ) поглощенной средой энергии. Для обычных реакций эта величина лежит в пределах от 1 до 20 молекул. Для цепных реакций она может достигать десятков тысяч молекул. [c.200]

    Еще более сильное действие на молекулы оказывают ядерные излучения (т лучи, протоны, нейтроны и др.) и рентгеновы лучи. Раздел химии, занимающийся вопросами химического действия этих излучений, называется радиационной химией. В отличие от нее радиохимией называют химию радиоактивных элементов, в частности, химию меченых атомов . Радиационная химия развивается в связи с развитием ядерной физико-химии и ядерной энергетики. Атомные реакторы, ускорители частиц, радиоактивные изотопы дают разнообразные очень [c.46]

    Еще более сильное действие на молекулы оказывают ядерные излучения (у-излучение, протоны, нейтроны и др.) и рентгеновское излучение. Раздел химии, занимающийся вопросами химического действия этих излучений, называется радиационной химией. В отличие от нее радиохимией называют химию радиоактивных элементов, в частности химию меченых атомов . Радиационная химия развивается в связи с развитием ядернсй физико-химии и ядерной энергетики. Атомные реакторы, ускорители частиц, радиоактивные изотопы дают разнообразные очень мощные потоки частиц, которыми все больше начинают пользоваться для осуществления химических реакций. Эти излучения рвут связи, выбивают отдельные атомы, порождают радикалы и ионы, а затем идут перегруппировки связей и возникают новые. Например, вместо двухстадийного обычного химического получения фенола из бензола можно получать это важнейшее вещество из бензола и воды в одностадийном процессе с использованием ядерных излучений. При этом из воды получаются радикалы ОН и Н и бензол далее реагирует по схеме [c.57]

    Энергия, выделяющаяся в результате ядерных реакций, на несколько порядков больше прочности химических связей, энергетического эффекта обычных химических реакций или количества энергии, необходимого для образования дефектов (дислокаций и вакантных узлов) в решетке твердых веществ. Ни однн материал независимо от его фазового состояния или внешних условий не является совершенно инертным по отношению к ядерным излучениям. Поэтому в последние годы с появлением легкодоступных источников высокой энергии химическое действие радиации активно исследовалось многочисленными учеными с самыми различными целями. Новая область радиацрюнной химии включает исследования, направленные на предотвращение ущерба от разрушающего действия радиации, на разработку методов избирательного разрушения (например, стерилизация и применение в медицине), или специфическое использование радиации для избирательного проведения химических реакций. Данная глава ограничивается рассмотрением последней из перечисленных областей радиационной химии и, в частности, выявлением возможностей использования ядерных излучений как способа проведения химических превращений в процессах нефтепереработки. [c.114]

    Наконец, большой интерес представляют данные о влиянии типа применяемого излучения на протекание такой нецепной реакции. Возможно, что различные излучения оказывают неодинаковое химическое действие. Причины этого заключаются в том, что при облучении тяжелыми несуп1 ими большой заряд частицами (например, альфа-частицами или ядрами гелия) образующиеся в исходном веществе химические промежуточные продукты на несколько порядков величин ближе друг к другу, чем при облучении легкими частицами с меньшим зарядом [5]. Это непосредственно следует из того, что проникающая способность данной частицы в поглощающем веществе тем меньше, чем тяжелее частица и чем больше ее заряд. [c.153]

    Лучистая энергия. Ультрафиолет и ионизирующее излучение непосредственно действуют на нуклеиновые кислоты в клетке, 15ызывая смертельные мутации, или приводят к образованию свободных радикалов, вызывающих инактивацию ферментных систем и разрущение клеточных структур. Солнечный свет, особенно его коротковолновая часть спектра, оказывает выраженное бактерицидное действие. УФО используют в медицине для обработки (дезинфекции) воздуха и поверхностей в операционных, родильных домах и отделениях, асептических помещениях аптек, в бактериологических лабораториях. Для этих целей в помещениях устанавливают бактерицидные облучатели с длиной волны 260 — 300 нм. Волны 260 нм максимально поглощаются ДНК, что приводит к образованию димеров тимина и соответственно к летальным мутациям. Вместе с тем УФО обладает низкой проникающей способностью и оказывает антимикробное действие только на поверхностях или в прозрачных растворах. Ионизирующее излучение (чаще у-лучи изотопов Со или - Сз) используют для стерилизации термочувствительных материалов, например изделий из пластика. Обладая высокой проникающей способностью, этот вид электромагнитных волн приводит к потере электронов и образованию из атомов ионов, появлению свободных радикалов, которые могут приводить к полимеризации и другим химическим реакциям, сопровождающим разрушение химических структур микроорганизмов, атакже появлению токсичных перекисных соединений. Чувствительность микроорганизмов к ионизирующему излучению сильно варьирует (например, облучение микобактерий туберкулеза дозой 0,14 мегарад приводит к такому же эффекту, как облучение возбудителя полиомиелита дозой 3,8 мегарад). [c.431]

    Кампетти [80] наблюдал излучение положительньш ионов при соединении меди с кислородом или хлором и, определяя их подвижность, пришел к выводу, что эти ионы были образованы вероятно окисью меди. Клеменсивиц [243] указывает, что он наблюдал подобное явление при восстановлении окисленной меди в атмосфере водорода, Ребуль[332] предполагает, что аналогичные результаты получаются при окислении амальгамированного алюминия, натрия и кальция влажным воздухом, при действии сероводорода на серебро и щелочные металлы, и при действии двуокиси углерода на щелочь. Томсон [451, 452] наблюдал излучение электронов при введении водорода в сплав натрия и кальция. Хотя количество электронов было весьма значительным по сравнению с происходившим химическим действием, Томсон утверждает, что натрий, помещенный в атмосферу водорода, реагирует подобно платине и палладию, т. е. с увеличением излучения электронов. Считается, что водород вызывает изменение энергии, сопровождающееся выделением электрона, а также изменением контактного потенциала. [c.249]


Смотреть страницы где упоминается термин Излучение химическое действие: [c.328]    [c.202]    [c.381]    [c.551]    [c.220]    [c.323]   
Руководство к практическим занятиям по радиохимии (1968) -- [ c.258 ]




ПОИСК





Смотрите так же термины и статьи:

Действие химическое



© 2024 chem21.info Реклама на сайте