Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Водород осушка

    Схема процесса состоит в следующем [129]. Охлажденный до 30—40° синтез-газ (На - -СО) поступает в колпачковый абсорбер, где он орошается раствором моноэтаноламина концентрации 15—20%. Насыщенный углекислотой раствор моноэтаноламина регенерируется нагревом водяным паром под давлением и снова возвращается в абсорбер на улавливание Og, а выделившаяся двуокись углерода возвращается в конвертор природного газа. Очищенный от Oj газ смешивают с циркулирующим водородом, сжимают до 28 ати, промывают 1 %-ным раствором щелочи для удаления следов Og, охлаждают и подвергают осушке активированной окисью алюминия для удаления следов влаги. [c.111]


    Процесс получения водорода методом электролиза воды является пожаро- и взрывоопасным. Опасность аварий, взрывов и пожаров может возникнуть при нарушениях технологического режима, утечках электролитических газов — водорода и кислорода, их смешении в коллекторах и внутри аппаратов во взрывоопасных соотношениях при проникновении водорода в кислород и кислорода в водород. Входящие в состав производства помещения электролиза воды, очистки и осушки водорода, наружные установки водорода (мокрые газгольдеры), отделения компрессии, наполнения и склады баллонов водорода по степени пожаро- и взрывоопасности относятся к категории А. [c.61]

    В США фирмой Линде эрионит выпускается под фирменным названием Цеолит И -500 . Кислотостойкий цеолит А]У-400 получают на основе эрионита и шабазита. Цеолит ЛИ -500 применяют для осушки газов, содержащих кислые компоненты, извлечения хлористого водорода, сернистого ангидрида, окислов азота. Его используют при осушке водорода риформинга, содержащего до 25 X X 10 % хлористого водорода, осушке хлора, осушке хлорпроизводных углеводородов (четыреххлористого углерода, метиленхлорида, метилхлорида и т. п.), осушке и очистке фторпроизводных углеводородов, очистке дымовых газов от сернистого ангидрида, удалении хлористого водорода из водорода. Равновесная адсорбционная способность этого адсорбента по основным компонентам промышленных газов составляет  [c.127]

    Синтетические цеолиты, получившие название молекулярных сит, обладают интересными структурными особенностями и специфическими свойствами. Одним из наиболее замечательных свойств цеолитов является их способность к избирательной адсорбции. Они иред-ставляют собой новое эффективное средство для осушки, очистки и разделения углеводородных и других смесей (газообразных и жидких) с целью получения чистых и сверхчистых веществ. Цеолиты применяют для извлечения из газовой смеси непредельных углеводородов (этилена), для очистки этилена от примесей ацетилена и двуокиси углерода, для очистки изопентана от примесей к-пентана, для разделения азеотропных смесей (метилового спирта и ацетона, сероуглерода и ацетона) и смесей, содержащих неорганические вещества (сероводород, аммиак, хлористый водород) и т. д. Они используются также для повышения антидетонационных свойств бензинов нутем избирательной адсорбции из них нормальных парафиновых углеводородов, а также для выделения ароматических углеводородов из смесей углеводородов с близкими физико-химическими константами, например извлечение бензола из смеси его с циклогексаном. В качестве осушителей цеолиты являются незаменимыми при наземном транспортировании газов в условиях севера и особенно при осушке трансформаторных масел. [c.12]


    Способность цеолитов одновременно адсорбировать пары воды и СО 2 можно использовать для решения очень важной промышленной задачи — создания защитных атмосфер, необходимых при обработке металлов, спекании металлокерамики, специальной пайке и т. п. (применение контролируемых защитных атмосфер позволяет регулировать содержание углерода в поверхностном слое стальных изделий и повышать усталостную прочность и долговечность деталей). Одновременно с парами воды и двуокисью углерода из воздуха под давлением при помощи цеолитов могут удаляться и углеводороды, в частности ацетилен. Кроме того, совместная адсорбция паров воды и СО 2 открывает перспективу для решения вопроса о тонкой осушке, об очистке некоторых газов, используемых в промышленности (воздуха, азото-водородной смеси, углеводородов и т. д.). Наряду с предварительной осушкой и очисткой воздуха цеолиты могут применяться и для очистки продуктов его разделения, например очистка аргона от кислорода и других примесей (азота, водорода и углеводородных газов). [c.111]

    Изучение основных кинетических закономерностей процесса низкотемпературной изомеризации н-пентана проводилось на алюмоплатиновом катализаторе, содержащем 10% хлора [37]. Исходные углеводороды и водород подвергались очистке и осушке, катализатор перед проведением опыта хлорировался обработкой в газовой фазе парами четыреххлористого углерода. Предварительными опытами, в которых линейная скорость изменялась от 0,117 до 0,234 м/с, а размер зерна от 2-3 до 0,5-1 мм, было показано, что при размере зерна катализатора 0,5-2 мм и линейной скорости потока 0,188 м/с реакция протекает в кинетической области. [c.24]

    Получение водорода, осушка и гидрирование Разделение жидких газов, метанирование водорода Печи пиролиза [c.533]

    Концентрирование и очис тка водорода Осушка крекинг-газов природного газа, пропилена, н-гептана, дихлорэтана, дихлорпропилена фенола, акрилонитрил циклогексана, бутадиена, хладагентов, бутилена [c.213]

    Для большинства потребителей газообразного хлористого водорода обычно необходим тщательно осушенный газ, и только отдельные производства, использующие, например, НС1 для целей высаливания из водных растворов, могут использовать влажный хлористый водород. Осушка хлористого водорода необходима также для снижения коррозионной активности газа. Тщательно высушенный хлористый водород может транспортироваться по стальным трубопроводам. [c.502]

    Обессеривание циркулирующего водорода Осушка сырья [c.713]

    ИДТИ смесь с содержанием кислорода не более 2 %. Подогреватель 3 включается лишь в период пуска установки для нагревания катализатора примерно до 373 К, а также используется для сушки катализатора в случае его увлажнения. В установившемся режиме подогреватель 3 выключается, а газ поступает в реактор 4 с температурой 403. .. 413 К, получающейся при его сжатии в газодувке. Очищаемый газ направляется в верхнюю часть реактора 4, куда вводится также водород через пламегаситель 5. Подача водорода в реактор регулируется автоматически с помощью пневматического клапана, управляемого газоанализатором на линии очищенного аргона. В реакторе на палладиевом катализаторе происходит химическое взаимодействие между кислородом и водородом с образованием водяных паров. Водород вводится в реактор с некоторым избытком (0,1. .. 0,5 %) в целях обеспечения полного гидрирования кислорода при возможных колебаниях режима. Аргон, очищенный от кислорода и содержащий водяные пары, направляется в холодильник 6 и влагоотделитель 7 для удаления капельной влаги. Затем основная масса газа возвращается во всасывающую линию газодувки, а небольшая часть, соответствующая производительности установки, отводится в газгольдер 8. Отсюда аргон, содержащий примеси азота и водорода, засасывается компрессорами 9, сжимается до давления 5. . 16,5 МПа и через блок адсорбционной осушки 10 поступает в реципиенты высокого давления 11, откуда отбирается в ректификационную колонну для очистки от азота н примесей водорода. Осушка очищенного аргона в блоке 10 производится на активной [c.170]

    Продукты реакции направляют на абсорбцию хлористого водорода и после осушки газовой смеси серной кислотой сжимают до 7 ат. При последующем охлаждении до —13° хлористый метилен и хлороформ ожижаются полностью, а хлористый метил частично. Остальное количество хлористого метила вместе с непрореагировавшим метаном снова возвращается в процесс. [c.169]

    Реакции изомеризации обратимы, поэтому равновесное содержание изомеров в смеси зависит от температуры процесса. Начинается изомеризация при 100—150°С, но скорости реакций при этом слишком низки. Для их повышения используют высокоактивные катализаторы и повышенные температуры (300— 400 °С). Для предотвращения разложения углеводородов и отложения кокса на катализаторе процесс осуществляют в присутствии водорода под общим давлением до 3—4 МПа. Применение высокоэффективных платиновых и палладиевых катализаторов предъявляет жесткие требования к качеству сырья и водородсодержащего газа. Диоксид углерода, влага и особенно сернистые соединения дезактивируют катализаторы. Поэтому требуется предварительная осушка и очистка водородсодержащего газа и сырья (рис. 69). [c.219]


    При разрыве предохранительных мембран в осушителях ацетилена прекращается прием ацетилена в отделение осушки при разрыве предохранительных мембран на реакторах прекращается подача ацетилена и хлористого водорода в аварийные аппараты. В обоих случаях включается аварийная вытяжная, вентиляция. [c.69]

    Для подавления кислотной функции катализатора свежий водород и циркулирующий газ предварительно подвергают осушке на цеолитах типа МаА в адсорбере 14. Концентрация водорода в циркулирующем газе составляет 80—85 % (об.), расход водорода на процесс составляет 0,1—0,3 % (масс.) на сырье. Катализатор регенерируют каждые 3—4 мес. путем выжига кокса. [c.45]

    Парожидкостная смесь после реактора П ступени 3 охлаждается в теплообменнике 6 и конденсаторе-холодильнике 7 и подается в сепаратор высокого давления 8. Отделившийся от жидкой фазы водородсодержащий газ проходит очистку от сероводорода в абсорбере 11, осушку и смешивается с сырьем. Для восполнения водорода, израсходованного на реакции гидрирования, в систему постоянно вводится свежий водород содержащий газ. [c.49]

    Пентаны подвергаются осушке контактированием с хлористым водородом, образующимся на стадии хлорирования. Безводные пентан и хлор испаряются (по отдельности), а затем тщательно смешиваются. Смешение компонентов следует производить при [c.85]

    В качестве источника водорода в процессе изомеризации используется водородсодержащий газ каталитического риформинга с объемным содержанием водорода 80%. В состав блока изомеризации входят следующие установки предварительного фракционирования сырья, азеотропной осушки н-пентановой фракции, изомеризации н-пентана, адсорбционной осушки циркулирующего газа, ректификации продуктов изомеризации. [c.150]

    Изомеризация осуществляется при температуре 360-420 °С, давлении 3,5 МПа, объемной скорости подачи сырья 1,5 ч , мольном отношении водород сырье 6, соотношении пентановой и гексановой фракций в сырье 50 50, расходе водорода на реакцию 0,25%. В результате достигается конверсия -пентана 48,9%, -гексана 68,0%. Длительность реакционного цикла 8 месяцев, катализатор ИП-62 алюмоплатиновый, промотированный фтором. Осушка циркулирующего газа проводится на цеолитах типа NaA с расчетом, чтобы содержание влаги в нем не превышало 10 мг/м . Регенерация катализатора осуществляется газовоздушной смесью путем ступенчатого выжига кокса при температурах 300-500 °С при давлении 0,5-1,0 МПа. [c.155]

    В реактор загружают 40 мл испытуемого катализатора, продувают установку последовательно азотом и водородом и под давлением водорода проводят опрессовку. Обеспечив необходимую герметичность аппаратуры, приступают к восстановлению катализатора в атмосфере водорода, очищенного от примесей СО, СО2, НгЗ, Н2О и МН.з. Для осушки водорода его пропускают через емкость, заполненную активной окисью алюминия, прокаленной при 500° С. Давление водорода составляет 40 кГ см , а кратность циркуляции— 120 мл ч. Эту операцию проводят 12 ч, выдерживая следующий режим  [c.174]

    Едкое кали и едкий натр. Эти вещества используют для осушки газов в тех случаях, когда необходимо избавиться от примесей кислого характера, например от хлористого водорода, сернистого газа. Едкие щелочи пригодны для предварительной сушки органических соединений основного характера, в частности аминов, а также простых эфиров. При сушке простых эфиров они одновременно удаляют пероксиды. Едкое кали относится к сильным осушителям, а едкий натр обладает средней осушающей способностью. [c.174]

    Раствор продуктов реакции из абсорбера подается в отпарную колонну, с верха которой отводятся хлористый водород и низкокипящие продукты реакции. Хлористый водород улавливается водой в специальном скруббере, а остаточный газ после нейтрализации щелочью и осушки поступает последовательно в две колонны для отгонки хлористого метила и хлористого метилена. [c.117]

    Отходящий газ промывается водой в абсорбере, где поглощается хлористый водород с получением технической соляной кислоты, а пропилен проходит через скруббер щелочной очистки от следов хлористого водорода, затем подвергается осушке и возвращается на хлорирование. Кубовый остаток подвергается ректификации и направляется на гипохлорирование. [c.324]

    При эксплуатации водородных установок аварии происходили на стадиях очистки и осушки водорода, в газгольдерах, при компрессии водорода и т. д. При производстве ТИБА должны четко выполняться требования Правил безопасности во взрывоопасных и взрыво-пожароопасных химических и нефтехимических производствах (ПБВХП-74). Следует обратить особое внимание на необходимость принятия особых дополнительных мер, исключающих применение в синтезе ТИБА водорода с повышенным содержанием кислорода и влаги. Поэтому остаточное содержание кислорода в водороде не должно превышать 0,02% (об.) содержание влаги должно быть не более 0,1 мг/л содержание водорода должно быть не менее 99,98% (об.). Чтобы предотвратить попадание на синтез водорода с повышенным содержанием кислорода, предусматривают блокировки, отключающие электролизеры при снижении концентрации водорода ниже установленной нормы. Для обеспечения необходимого режима и чистоты электролизных газов предусматривают также блокировки, отключающие электролизеры при повышении в них более 80% или снижении ниже 20% уровня конденсата, при увеличении избыточного давления в электролизерах более 1 МПа (10 ат) и отсутствии напряжения на блокировках безопасности. Электролиз автоматически отключается также при повышенной загазованности (более 20% от нижнего предела области воспламенения водорода в помещении). [c.152]

    Для промышленных условий большое значение имеет динамическая активность цеолитов по парам воды, устанавливаемая при пропускании потока газа, содержащего влагу, через слой цеолита определенной высоты. Повышение температуры в адсорбенте приводит к снижению его динамической активности. На адсорбционную способность цеолитов повышение температуры оказывает меньшее действие, чем на адсорбционную способность силикагеля или алюмогеля. При увеличении скорости газового потока или при повышении давления адсорбционная способность цеолитов падает меньше, чем других адсорбентов, в частности силикагеля. В связи с этим они могут быть успешно использованы в процессах разделения воздуха, синтеза аммиака, осушки водорода и т. д. [c.109]

    На схеме 2 рис. 16 показано, что в качестве основного агрегата газификации может быть принята установка типа ГРГ. В этом случае гидрокрекинг сырой нефти должен предшествовать стадии разгонки по фракциям, а очистка газов, покидающих реактор ГРГ, от жидких погонов и сероводорода должна осуществляться перед операциями метанизации, осушки и выдачи конечного продукта. Остаток после фракционной разгонки необходимо, как и в предыдущем случае, подвергать конверсии по методу частичного окисления с целью получения водорода, необходимого для осуществления процесса в реакторе ГРГ. [c.143]

    В табл. 37 приведены составы газов на входе и выходе как первой, так и второй стадий процесса метанизации, примененных в установке типично низкотемпературной конверсии ( МБГ-про-цесс ). Характеристики горения, данные в таблице, относятся не к газу, непосредственно образовавшемуся в установке, а к газу, прошедшему осушку, или к осушенному газу, прошедшему стадию снижения содержания в нем двуокиси углерода до I % -Таким образом, на первой стадии метанизации производится газ, содержащий около 10% водорода (в пересчете на сухой) я имеющий скорость распространения пламени, приблизительно равную 0,184 м/с. Как было показано в гл. 3, это вполне приемлемо для бытовых установок США, однако расчеты должны быть предельно точными. Как уже упоминалось в гл. 6 при рас- [c.183]

    Очистка водорода Осушка и очистка циркулирующего водорода Разделение н- и изобутана ( изосив ) [c.212]

    I—аппарат ДЛЯ осушки хлористым кп. ьаисм 2—песчаный фильтр 3—абсорбер хлористого водорода 4 — подогреватель 6 — реактор б —. овый насос 7 — разделитель с обогревом S—холодильники 9 — разделитель холодной смеси 10 -аппарат для водной промывки 11 — колонна для отделения хлористого водорода iii--холодильник 13 — аппарат для щелочной промывки. [c.526]

    Опасность взрывов, загораний и загазованности в зале электролиза, в отделениях- перекачки водорода, охлаждения и осушки хлоргаза создается при нарушениях технологического режима. Опасность представляют аппараты и трубопроводы, работающие под давлением, и электролизеры с ошино кой, находящейся под напряжением постоянного электрического тока 500—8 5 В. [c.44]

    Из холодильникачгепаратора 9 газ забирается газовым насосом 10, проходит через систему фильтров 11-13 и поступает в капельницу J для смешения с сырьем. Свежий водород, поступающий из баллона, подвергается очистке от кислорода и других примесей в форконтакторе 15, заполненном катализатором ИП-62, затем осушке ъ 14. [c.78]

    При низкотемпературной изомеризации на катализаторе Рт — А12О3 — С1, учитывая весьма жесткие требования к содержанию вышеназванных примесей в сырье и водороде (табл. 3.3), в схеме установки предусматривают блоки каталитической очистки сырья и водородсодержащего газа с последующей осушкой на молекулярных ситах. Подобные усложнения технологической схемы и соответственно увеличение эксплуатационных и капитальных затрат оправдываются значительно более высокими показателями процесса. [c.95]

    Исходная пентан-гексановая фракция - сырье процесса пенекс — подвергается гидроочистке, а углеводородное сырье реактора и подпитка водорода — дополнительной адсорбционной осушке на молекулярных ситах. Для процесса пенекс не требуется тщательной подготовки сырья с целью удаления циклических углеводородов С или небольших количеств гептанов. [c.102]

    Сырье после гидроочистки на кобалымолибденовом катализаторе подвергают осушке на молекулярных ситах, смешивают с циркулирующим водородом, нш ревают и пропускают над катализатором в первом из реакторов где происходит гидрирование ароматических и олефиновых углеводородов и изомеризация парафиновых углеводородов, затем поток сырья и водорода охлаждают и направляют во второй реактор, где протекает изомеризация при бопее низких темпера- [c.104]

    II - сепаратор сероводорода 12 - паровой подогреватель 13 - десорбер МЭА 14, 17 - емкости МЭА 15 - абсорбер 16 - отстойник раствора МЭА 18 - абсорбер для осушки газа 19 - поршневой компрессор 20 - сепаратор-отстойник 21 - насос для подачи активатора 22 - емкость активатора 23 каплеуловитель / - сырье после отстоя II - активатор III - диэтиленгликоль IV - свежий водород V - бензин VI - компонент зимнего дизельного топлива VII - сероводород на установку производства Hj SO4 VIII- газ в топливную сеть /Л" - моноэтанол-амин - диэтиленгликоль на регенерацию. [c.125]

    В промышленности приняты следующие процессы жидкофазный процесс синтеза этилбензола на катализаторе AI I3. Процесс ведут в стальных колоннах, облицованных специальными антикоррозионными материалами, реакция идет при температуре кипения реакционной смеси (80—100°С) и атмосферном давлении. В качестве сырья используется бензол со степенью чистоты пе -ниже 99%. Твердый хлорид алюминия прибавляется к реакционной смеси и -в реакторе образуется соответствующее комплексное соединение. Бе-нзол-сырье и бензол-рециркулят после предварительной осушки подаются в реактор. Хлористый водород или хлористый этилен также добавляются в реактор. Жидкие продукты из алкилатора охлаждаются и направляются в отстойник, где -каталитический комплекс отделяется и возвращается в алкилатор. Алкилат промывается водой, затем 20%-пой водной щелочью для нейтрализации НС1, после чего разделяется на -индивидуальные компоненты на стадии ректификации. [c.266]

    В тех случаях, когда циркуляционные компрессоры участвуют при операциях регенерации катализатора, они проверяются нз условий обеспечения подачи инертных или дымовых газов в требуемом количестве на различных ступенях регенерации катализатора и заданного давления. Кратность циркуляции при операциях выжига кокса обычно рекомендуется выбирать в пределах 500—1000 м /ч на 1 м регенерируемого катализатора. Особое внимание следует обращать также на наличие в циркулирующих дымовых газах компоиеитоз, вызывающих нарушение прочностных характеристик компрессоров, таких как сернистый ангидрид, хлористый водород, особенно в присутствии влаги. В последних случаях в проектах закладываются мероприятия по очистке и осушке циркулирующих дымовых газов. [c.179]

    Паро-газовая смесь, выходящая из конденсатора 5, содержит п(авным образом хлористый водород и дифтордихлорметан с примесью монофторгрихлорметана, монохлортрифторметана и фтористого водорода. После снижения давления почти до атмосферного в дроссельном вентиле 6 фтористый водород отделяется в башне 7, заполненной кусками фтористого калия. Последний реагирует с НР, образуя дифторид калия КНРг, который можно использовать для получения фтора методом электролиза. Дальнейшую очистку от хлористого водорода можно осуществлять ранее рассмотренным методом с получением концентрированной соляной кислоты. Иа схеме изображена простейшая очистка путем абсорбции избытком воды в скруббере 8 и водной щелочью в скруббере 9. Осушку оставшегося газа можно проводить концентрированной серной кислотой, циркулирующей в колонне 10. [c.166]


Смотреть страницы где упоминается термин Водород осушка: [c.147]    [c.154]    [c.111]    [c.172]    [c.176]    [c.95]    [c.135]    [c.62]    [c.117]    [c.104]    [c.51]    [c.113]    [c.195]   
Производство хлора и каустической соды (1966) -- [ c.34 , c.35 ]




ПОИСК





Смотрите так же термины и статьи:

Осушка



© 2025 chem21.info Реклама на сайте