Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Агрегативная растворов полимеров

    Каково практическое применение растворов полимеров Рассмотрите факторы, обеспечивающие агрегативную устойчивость дисперсных систем прн стабилизации их полимерами. [c.155]

    Молекулярная теория находит подтверждение в ряде фактов и наблюдений. Во-первых, определение молекулярных весов в раа-бавленных растворах полимеров методами, прямо указывающими молекулярный вес частиц (например, методом светорассеяния), однозначно показало отсутствие в таких растворах мицелл, т. е. частиц, состоящих из агрегатов молекул. Во-вторых, растворение высокомолекулярного вещества, как и растворение низкомолекулярных соединений, идет самопроизвольно, часто с выделением тепла. Например, достаточно желатин внести в воду, а каучук в бензол, чтобы через некоторое время без какого-либо вмешательства извне образовался раствор полимера в растворителе. При диспергировании же вещества до коллоидного состояния, как известно, требуется затрата энергии на преодоление межмолекулярных сил. В-третьих, растворы полимеров термодинамически устойчивы и при соответствующих предосторожностях могут храниться сколь угодно долго. Коллоидные растворы, наоборот, термодинамически неустойчивы и способны стареть. Это объясняется тем, что при растворении полимеров всегда образуется гомогенная система и свободная энергия уменьшается, как, и при получении растворов низкомолекулярных веществ, либо за счет выделения тепла в результате взаимодействия полимера с растворителем, либо за счет увеличения энтропии. При получении же гетерогенной коллоидной системы ее свободная энергия всегда возрастает в результате увеличения поверхности дисперсной фазы. В-четвертых, растворение высокомолекулярных соединений не требует присутствия в системе специального стабилизатора. Лиофобные же золи не могут быть получены без специального стабилизатора, придающего системе агрегативную устойчивость. Наконец, растворы полимеров находятся в термодинамическом равновесии и являются обратимыми системами к ним приложимо известное правило фаз Гиббса. [c.434]


    Сильно разбавленный раствор полимера небольшой молекулярной массы в очень хорошем растворителе представляет собой гомогенный молекулярный раствор. С увеличением концентрации или с ухудшением растворяющей способности растворителя макромолекулы полимера или сворачиваются в относительно плотный клубок — глобулу, или образуют агрегаты из нескольких макромолекул. Оба эти процесса приводят к возникновению новой фазы, т. е. к образованию мицелл. Раствор полимера, содержащий мицеллы, приобретает свойства обычного золя. Агрегативная устойчивость такого золя обусловлена тем, что при образовании мицеллы полярные или неполярные группы полимера определенным образом ориентируются на границе макромолекула — среда, благодаря чему вокруг мицелл возникает сольватная оболочка. Этот процесс аналогичен процессу ориентации при образовании мицелл из молекул ПАВ. [c.254]

    Как было указано выше, растворы полимеров образуются самопроизвольно при контакте растворяемого вещества с растворителем. Благодаря большим размерам молекул высокомолекулярных соединений процесс распределения макромолекул в объеме растворителя протекает сравнительно медленно и медленно достигается состояние термодинамического равновесия. В равновесном состоянии растворы высокомолекулярных веществ агрегативно устойчивы, как и истинные растворы низкомолекулярных веществ. [c.258]

    Важно отметить, что каждый этап развития коллоидной химии не был простым отрицанием предыдущего, а преодолением исторической ограниченности предыдущего этапа. Современное деление коллоидных систем на лиофобные дисперсные системы и растворы высокомолекулярных веществ не отрицает лиофильности последних, а подчеркивает невозможность сведения к лиофильности принципиально иных свойств молекулярных растворов полимеров. Установление природы агрегативной устойчивости коллоидных систем не умаляло роли размеров коллоидных частиц, а Выяснило невозможность сведения всех свойств коллоид- [c.13]

    Характер седиментационных процессов в газовых эмульсиях, где дисперсионная среда — раствор полимера— резко зависит от степени их агрегативной устойчивости, т. е. знака адсорбции полимера на границе [24, 25, 27, 35] раздела фаз и наличия ПАВ. Это показано на при- [c.104]

    Порошки металлов в полимере выполняют не только роль наполнителей, но и структурообразователей, вулканизующих добавок и т.д. Чем меньше частицы - металла, тем больше удельная поверхность порошка и выше его физико-химическая активность. Особенно активны металлы коллоидной степени дисперсности. При взаимодействии макромолекул с коллоидными металлами, полученными в растворе полимера, образуются предельно однородные двух фазные агрегативно устойчивые металлополимерные матричные материалы, получившие название коллоидных металлополимеров. Коллоидные металлополимеры с успехом можно использовать в качестве антифрикционных, полупроводниковых, антикоррозионных, ферромагнитных, каталитически активных и других материалов. [c.13]


    Важно отметить, что каждый этап развития коллоидной химии был не простым отрицанием предыдущего, а преодолением исторической ограниченности предыдущего этапа. Современное деление коллоидных систем на лиофобные дисперсные системы и растворы высокомолекулярных веществ не отрицает лиофильности последних, а подчеркивает невозможность сведения к лиофильности принципиально иных свойств молекулярных растворов полимеров. Установление природы агрегативной устойчивости коллоидных систем не умаляло роли размеров коллоидных частиц, а выяснило невозможность сведения всех свойств коллоидных систем к количественным различиям в размерах частиц. Современная коллоидная химия уделяет исключительное внимание изучению размеров и формы частиц и учету роли этого фактора в свойствах коллоидных систем, [c.12]

    В процессах переработки высоковязких полимерных жидкостей, например растворов полимеров при получении химических волокон и пленок, важнейшей стадией является удаление диспергированного и растворенного газа [1]. Из приведенных в таблице свойств некоторых прядильных растворов полимеров видно, что они обладают очень высокой вязкостью, а изменение поверхностных свойств должно приводить для ряда растворов к образованию агрегативно-устойчивых газовых эмульсий и пен. [c.119]

    В течение очень длительного времени растворы полимеров рассматривались как лиофильные коллоидные системы с присущими для них гетерогенностью и термодинамической и агрегативной неустойчивостью. Этому неправильному представлению о природе растворов полимеров способствовала широко распространенная в свое время механистическая концепция Оствальда, положенная в основу классификации дисперсных систем вообще, по которой отнесение систем к группе истинных растворов, к группе коллоидов или грубых суспензий производилось по размерам диспергированного компонента системы. [c.243]

    В противоположность им растворы полимеров гомогенны, однофазны, агрегативно устойчивы, образуются самопроизвольно и к ним, как и к растворам низкомолекулярных соединений, приложимо правило фаз ( 34). Применимость правила фаз и обратимость растворов полимеров были доказаны В. А. Каргиным с сотрудниками (1937—1941) на основании изучения диаграмм состояния, образованных производными целлюлозы с различными растворителями только равновесие в этих растворах наступает очень медленно вследствие малой скорости диффузии макромолекул полимера. Если в растворах низкомолекулярных веществ равновесие достигается через несколько часов, а иногда минут, для растворов полимеров на это требуются недели и даже месяцы. [c.258]

    Особенности стабилизирующего действия ПАВ в полимерных системах наглядно проявляются при сопоставлении влияния перечисленных факторов на дисперсный состав (основной показатель, характеризующий агрегативную устойчивость суспензий) органодисперсий в чистых растворителях и растворах полимеров. [c.116]

    Рассматривая нефтяные дисперсные системы в виде суспензий возможно предположить, что размеры растворенных частиц, в частности агрегативных комбинаций, намного превышают размеры молекул растворителя. Подвижность такой растворенной частицы, представляемой в виде макромолекулы, будет определять вязкость раствора. Очевидно, такое подвижное макроскопическое тело в растворе может характеризоваться некоторым средним размером. При этом следует обратить особое внимание на нефтяные углеводородные системы, в которых растворенным веществом являются полимеры. В этих случаях необходимо рассматривать макромолекулы в двух направлениях. Так, линейный размер макромолекулы вдоль цепи велик по сравнению с молекулами растворителя. Однако размер макромолекулы в направлении, перпендикулярном главной оси, соизмерим по величине с диаметром молекулы растворителя. [c.89]

    Растворы высокомолекулярных веществ, если они находятся в термодинамически равновесном состоянии, аналогично истинным растворам обладают абсолютной агрегативной устойчивостью. Высокая устойчивость коллоидных растворов ВМС определяется, в основном, двумя факторами — наличием на поверхности частиц двух оболочек электрической и сольватной (гидратной). Поэтому для коагуляции коллоидов высокомолекулярных соединений необходимо не только нейтрализовать заряд коллоидной частицы, но и разрушить жидкостную оболочку. Выделение ВМС из растворов по своему характеру отличается от коагуляции типичных гидрофобных коллоидов. Так. если для гидрофобных золей достаточно незначительных добавок электролитов, чтобы вызвать коагуляцию, то для высокомолекулярных веществ этого недостаточно. Для выделения дисперсной фазы полимеров необходимы высокие (вплоть до насыщенных растворов) концентрации электролитов. Явление выделения в осадок растворенного ВМС под действием большой концентрации электролита получило название высаливания (опыт 110,113). [c.227]

    Одной из форм существования коллоидов и полимеров является студнеобразное состояние, промежуточное между жидким и твердым состояниями. Застудневание коллоидных растворов — следствие нарушения агрегативной устойчивости, приводящее к структурообразованию. На процесс застудневания оказывают влияние концентрация раствора, форма частиц или молекул, температура, действие электролитов и ПАВ. Растворы ВМВ застудневают и плавятся в определенном интервале температур, причем температура застудневания обычно несколько ниже температуры плавления (имеет место гистерезис). Структурообразование в золях возможно только при определенной концентрации электролитов, которая резко уменьщается с увеличением заряда вводимых ионов. Ускорению застудневания растворов ВМВ способствуют небольшие концентрации электролитов. Высокие концентрации ПАВ препятствуют застудневанию, так как происходит полный разрыв связей между частицами. [c.474]


    Защитным действием по отношению к коллоидным растворам в воде обладают белки, полисахариды, пектиновые вещества. Механизм защитного действия сводится к адсорбции молекул высокомолекулярного вещества на поверхности частиц золя. Адсорбируясь на частицах гидрозолей, макромолекулы белков и других растворимых в воде полимеров располагаются на поверхности твердой фазы так, что их гидрофильные (полярные) группы обращены к воде. Благодаря этому усиливается гидратация частиц.(Если в состав полимера входят ионогенные группы, способные к диссоциации,. как, например, в белках, то защитный слой сообщает. частице и достаточно высокий электрокинетический потенциал. Гидратная оболочка и высокий электрокинетический потенциал придают золю необычную для него агрегативную устойчивость. Цля разрушения такого золя необходимо прибавить к нему такое же большое ко- [c.264]

    Для интенсификации процессов хлопьеобразования и осаждения взвешенных частиц в современной технологии водоочистки в качестве флокулянтов обычно используют коллоидную кремнекислоту, а также природные и синтетические высокомолекулярные соединения с молекулярной массой от десятков тысяч до нескольких миллионов н длиной цепочки из повторяющихся звеньев в десятки тысяч нанометров. Процесс флокуляции следует рассматривать как образование хлопьев при взаимодействии компонентов двух разнородных систем макромолекул растворимых полимеров и частиц коллоидных растворов и суспензий с четкой поверхностью раздела фаз. Таким образом, при использовании флокулянтов происходит взаимодействие термодинамически обратимой молекулярно-гомогенной системы с агрегативно неустойчивыми микрогетерогенными и гетерогенными системами [36]. [c.30]

    Седиментационное удаление пузырьков во II периоде зависит от агрегативной устойчивости газовой эмульсии. При отрицательной поверхностной активности полимеров в растворе пузырьки укрупняются в основном за счет сравнительно быстрой коалесценции, и весь процесс дегазации протекает сравнительно быстро, часто даже с самоускорением. При отсутствии коалесценции скорость дегазации значительно меньше очень часто она идет с замедлением [161]. [c.132]

    С начала развития коллоидной химии связь молекул дисперсионной среды с частицами дисперсной фазы — сольватация или, в частности, гидратация — рассматривается как один из основных факторов агрегативной устойчивости. После того как выяснилось, что равновесные разбавленные растворы высокомолекулярных соединений представляют собой молекулярно-дисперсные системы, казалось, что классические гидрофильные коллоиды перестали быть предметом коллоидной химии и интерес к сольватации уменьшился. Однако в последние годы опять выявилось значение рассматриваемого фактора. На новом уровне развилась коллоидная химия высокомолекулярных соединений, занимающаяся поверхностными явлениями в полимерах. Доказано значение [c.147]

    Ю. И. Вейцер к флокулянтам относит высокомолекулярные вещества, образующие с находящимися в воде грубодисперсными и коллоидными частицами трехмерные структуры — агрегаты, хлопья, комплексы. В последнем случае флокуляция рассматривается как образование хлопьев при взаимодействии компонентов двух разнородных систем (независимо от того, за счет каких сил это происходит) макромолекул растворимых полимеров — термодинамически обратимых молекулярно-гомогенных систем и частиц коллоидных растворов и суспензий (с четкой поверхностью раздела фаз) — агрегативно неустойчивых микрогетерогенных и гетерогенных систем. [c.624]

    Концентрация электролита. Добавки электролитов обычно улучшают флокулирующее действие как заряженных, так и незаряженных полимеров [2, 125, 127, 129, 130]. При этом уменьшается доза реагента, которая необходима для достижения определенной степени флокуляции, одновременно с этим расширяется зона флокуляции. Это объясняется, с одной стороны, дополнительным уменьшением агрегативной устойчивости дисперсии вследствие сжатия двойного слоя и снижения (для многозарядных ионов) заряда и потенциала частиц, а с другой — тем, что вследствие уменьшения адсорбции неионных полимеров с ростом ионной силы раствора увеличивается концентрация ВМС, отвечающая стабилизации системы. [c.136]

    Агрегативная стабильность зависит от степени насыщенности поверхности частиц полимера в дисперсии (глобул) эмульгатором. Ее находят титрованием латекса раствором эмульгатора, контролируя изменение по- [c.66]

    Этим названием обычно объединяют дисперсии (эмульсии), полученные из полимеров или олигомеров, а не полимеризацией мономеров в дисперсионной среде. Полученные дисперсии должны быть устойчивы при хранении и характеризоваться высокой степенью дисперсности и агрегативной устойчивостью (и при введении отвердителей). Из искусственных дисперсий для получения клеев чаще всего применяют дисперсии олигомеров или форполимеров эпоксидов и изоцианатов. Иногда фенолоформальдегидные и другие клеевые смолы выпускают не в виде истинных растворов, а в виде эмульсий. Они рассматриваются среди водорастворимых термореактивных клеев. В клеях могут применяться также искусственные латексы полиизопрена, бутилкаучука и сополимеров этилена с пропиленом [122]. [c.105]

    Факторы устойчивости растворов полимеров. Растворы полимеров в хорощо растворяющих их жидкостях агрегативно устойчивы. Нарушить устойчивость растворов полимеров можно путем ухудшения растворимости ВМВ — введением электролитов или нераство-рителей (жидкостей, плохо растворяющих данный полимер). Так, например, для белков и полисахаридов нерастворителями являются этанол, ацетон. [c.467]

    Растворы высокомолекулярных соединений не являются коллоидными системами. Они отличаются от последних характерными признаками, будучи термодинамически равновесными системами, агрегативно устойчивыми без стабилизатора. Однако некоторые свойства коллоидных систем и растворов высокомолекулярных соединений одинаковы молекулы полимеров близки по размерам к коллоидным частицам, поэтому и те и другие системы обладают небольшой способностью к диффузии их можно диализовать растворы высокомолекулярных соединений, как и коллоидные системы, обнаруживают опалесценцию. Наконец, при определенных условиях в растворах полимеров и в коллоидных системах возможно структурирование. Поэтому многие физико-химические свойства высокомолекулярных соединений рассматриваются в курсе коллоидной химии. [c.69]

    Первые работы по применению правила фаз к растворам полимеров относятся к 1912 г. в качестве объекта исследования были взяты белковые вещества яичный и сывороточный альбумин и желатин. Наибольшее значение в этой области имели работы Зеренсена- и Мак Бена , которые изучали процессы высаливания белков и желатина из водных растворов солями N3. 804, (ЫН4)2304, KNOз, КаМО.- и т. д. Мак Бен писал, что растворы желатина термодинамически устойчивы в том смысле, в каком устойчивы кристаллы или растворы сахара и соли . Несмотря на наличие таких указаний, растворы желатина, так же как и других полимеров, очень долго считались коллоидными, агрегативно и термодинамически неустойчивы.ми системами. [c.306]

    Первые работы по применению правила фаз к растворам полимеров принадлежат Зеренсену и Мак-Бену [11], которые изучали процессы высаливания белков и желатины из водных растворов солями Ыа2304, (NH4)2S04, КНОз, КаКОз и т.д. Зная число компонентов и число фаз, они рассчитывали по уравнению (10.3) число степеней свободы для исследованных систем. На основании этого был сделан вывод, что растворы желатины термодинамически устойчивы в том смысле, в каком устойчивы кристаллы или растворы сахара и соли . Несмотря на наличие таких указаний, растворы желатины, так же как и других полимеров, очень долго считались коллоидными, агрегативно и термодинамически неустойчивыми системами. Такие представления, однако, впоследствии были опровергнуты и было показано, что самопроизвольно образующиеся растворы полимеров являются истинными растворами. Большую роль в этом сыграли работы Каргина, Роговина и Папкова [12], которые получили первые диаграммы состояния полимер— растворитель. Они обратили внимание на то, что все точки на кривой взаимного смешения получены в равновесных условиях, следовательно, состояние системы не зависит от пути достижения равновесия. Поэтому применимость правила фаз является критерием обратимости и термодинамической устойчивости системы полимер — растворитель. [c.282]

    Нестабилизиро1 анные суспензии, полученные из большинства глинистых пород, теряют агрегативную устойчивость под действием электролитов, концентрации которых превышают порог коагулйции. Происходит разделение фаз с выпадением частиц глинистых пород в осадок и образованием отстоя прозрачного раствора. Чтобы предотвратить это явлен не, обычно применяют реагенты-стабилизаторы (водорастворимые эфиры целлюлозы, крахмал, акриловые полимеры, лигносульфонаты и др.). [c.7]

    Коллоидные системы, дисперсные системы с частицами дисперсной фазы от 10 до 10 см. Коллоидные частицы, участвуя в интенсивном броуновском двих<ении, противостоят седиментации (оседание частиц на дно) в поле сил земного тяготения и сохраняют равномерное распределение по объему дисперсионной среды. Наиболее важны и многообразны коллоидные системы с жидкой дисперсионной средой. Их делят на лиофильные и лиофобные. В первых частицы дисперсной фазы интенсивно взаимодействуют с окружающей жидкостью, поверхностное натяжение на границе фаз очень мало, вследствие чего эти коллоидные системы термодинамически устойчивы. К лиофильным коллоидным системам относят мицеллярные (мицелла - коллоидная частица), растворы ПАВ (поверхностно активные вещества), растворы некоторых высокомолекулярных веществ, органических пигментов и красителей, критических эмульсий (образующиеся вблизи критической температуры смешения двух жидких фаз), а также водные дисперсии некоторых минералов. В лиофобных коллоидных системах частицы слабо взаимодействуют с дисперсионной средой, межфазное натяжение довольно велико, система обладает значительным избытком свободной энергии и термодинамически неустойчива. Агрегативная устойчивость лиофобных коллоидных систем обычно обеспечивается присутствием в системе стабилизирующего вещества, которое адсорбируется на коллоидных частицах, препятствуя их сближению и соединению (коагуляции - образованию агрегатов). Типичные лиофобные коллоидные системы - золи металлов, оксидов и сульфидов, латексы (водные дисперсии синтетических полимеров), а также гели (структурированные коллоидные системы с жидкой дисперсионной средой), возникающие при коагуляции и структурировании золей. [c.116]

    Образование истинного раствора пластификатора в полимере принято называть совместимостью [I]. Если полимер самопроизвольно набухает в пластификаторе, то это значит, что он с ним совмещается, т. е. происходит молекулярное диспергирование за счет термодинамического сродства пластификатора к полимеру. Если пластификатор не имеет термодинамического сродства к полимеру, он самопроизвольно в полимер не проникает, т. е. набухания не происходит [2]. Однако при принудительном смещении на вальцах или в экструдере в результате затрат механической энергии пластификатор может коллоидно диспергироваться в полимере, но образующаяся эмульсия является термодинамически и агрегативно неустойчивой системой, взаимодействие между полимером и пластификатором отсутствует, и поэтому система расслаивается. Внещне расслаивание проявляется в выпотевании пластификатора— образовании на поверхности пластифицированного полимера жирного налета или капель. В прозрачных полимерных пленках микроскопические капли пластификатора становятся центрами рассеяния света, и материал мутнеет. Выпотевание пластификатора может происходить и под влиянием температуры, давления механических напряжений и т. д. При создании промышленных рецептур пластифицированных полимеров часто используют пластификаторы, ограниченно совместимые с полимером. [c.137]

    Если полимер самопроизвольно набухает в пластификаторе, это значит, что он с ним совмещается — происходит молекулярное диспергирование за счет термодинамического сродства пластификатора к полимеру. Если пластификатор не имеет термодинамического сродства к полимеру, он не проникает самопроизвольно в полимер, т. е. набухания не происходит. Однако при принудительном смешении на вальцах или в экструдере пластификатор может коллоидно дис-пергироваться в полимере, но образующаяся амульсня является термодинамиче-ски и агрегативно-неустойчнвой, и система расслаивается. Внешне расслаивание проявляется в выпотевании (образовании на поверхности изделия жирного налета или капелек) пластификатора. В прозрачных пленках микроскопические капельки пластификатора становятся центрами рассеяния света, и материал мутнеет. При отработке промышленных рецептур пластикатов обычно используют ограниченно совместимые пластификаторы. Предел совместимости (концентрация насыщенного истинного раствора пластификатора в полимере) зависит в первую очередь от строения пластификатора, колебаний температуры, метода переработки, условий эксплуатации пластифицированного полимера. [c.339]

    Выполненные намй опыты по флокуляции глинистых частиц анионными полимерами показали, что введение в воду, содержащую агрегативно-устойчивые отрицательно заряженные частицы ( -потенциал равен 32,4 мВ) альгината натрия, полиакриламида, сульфополистирола, карбокси-метилцеллюлозы и других анионных флокулянтов в диапазоне концентраций от 0,002 до 0,1 мг/мг твердой фазы не привело к флокуляции. После добавления флокулянтов не изменялась оп к ическая плотность растворов, не происходило хлопьеобразова-ние и осаждение взвешенных веществ, практически не наблюдалась адсорбция, мало изменялся электрокинетический потенциал. Все это указывало н а отсутствие какого- [c.94]

    В случае сложных горно-геологических условий (высокие пластовые давления и температура) необходимы буферные растворы высокой плотности и агрегативной стабильности. Для условий Астраханского ГКМ В.Г. Тихоновым проведены работы по созданию буферных систем с регулируемой плотностью в диапазоне 1550 — 2000 кг/м . Создание такой системы предопределяет содержание в ней утяжелителя и полимерсодержащих компонентов с минеральными или органическими наполнителями для предотвращения его седиментации. В качестве наполнителя предложен гидролизный лигнин с фракционным составом (%) 62,3 (>2,5 мм) 30,8 (0,2 —0,5 мм) 4,7 (0,085 — 0,2 мм) и 2,2 (<0,085 мм). Буферную жидкость готовят в два этапа на первом — приготавливают структурированную суспензию на основе лигнина, полимера и воды. В результате получается суспензия с плотностью 1010 — 1020 кг/м . На втором — система утяжеляется баритом до необходимой плотности. В качестве полимера используется КМЦ в виде водного 1,0— 1,5%-ного раствора. [c.452]

    При проникновении жидкого пластификатора в полимер может происходить коллоидное или молекулярное диспергирование. Если пластификатор имеет сродство к полимеру, то он диспергируется молекулярно — образуется истинный р-р пластификатора в полимере, т, е. полимер набухает в пластификаторе (см. Набухание). Если пластификатор не имеет сродства к полимеру, набухания пе происходит, но в смесителе или па вальцах можно приготовить коллоидную систему. Образующаяся эмульсия является термодинамически и агрегативно неустойчивой системой, которая через какой-то промежуток времени (нри хранении или эксплуатации) расслаивается, Внешне это выражается в появлении капелек или кристалликов пластификатора на поверхности изделия или в помутнении прозрачного изделия. Если система образует истинный раствор, т. е. термодинамически устойчива, ее принято называть совместимой. При самопроизвольном набухании полимер совмещается с пластификатором, при коллоидном дисиергировании—не совмещается. Истинные р-ры образуются при взаимодействии полимера и пластификатора, близких по полярности. Резко отличные но полярности полимер и пластификатор не совмещаются. Количество введенного пластификатора должно соответствовать его истинной растворимости в полимере в широкой области темп-р, охватывающей темп-ры хранения и эксплуатации изделий. Учитывая это, при подборе пластификаторов необходимо исследовать диаграммы состояния систем полимер — пластификатор в широкой области темп-р и концентраций. [c.26]


Смотреть страницы где упоминается термин Агрегативная растворов полимеров: [c.12]    [c.16]    [c.150]    [c.12]    [c.150]    [c.57]    [c.326]    [c.432]    [c.456]   
Курс коллоидной химии (1976) -- [ c.465 ]




ПОИСК





Смотрите так же термины и статьи:

Растворы полимеров



© 2025 chem21.info Реклама на сайте