Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Метан эндотермическая

    На основании энергий диссоциации связей можно предсказать, будут простые радикальные реакции экзотермическими или нет. Так, взаимодействие гидроксильного радикала с метаном будет экзотермическим процессом, а атома брома с метаном — эндотермическим [c.252]

    В зоне эндотермической конверсии сырье реагирует с водяным паром в присутствии катализатора при температуре 330—380° С с образованием конвертированного газа, состоящего из водорода, окиси углерода и углекислого газа. Полученный газ вводят в соседнюю экзотермическую реакционную зону, в которой при температуре 380—480° С в присутствии катализатора образуется газ, обогащенный метаном. Передачу тепла из экзотермической зоны в эндотермическую осуществляют косвенным теплообменом между более горячими газами экзотермической зоны и потоком сырья, поступающего в эндотермическую [c.138]


    Если основной целью является получение синтез-газа с различным соотношением На СО, можно увеличить содержание СО добавлением в реакционную смесь СОа. Это смещает равновесие в сторону образования СО с другой стороны, при высоких температурах СОа вступает с метаном в следующую сильно эндотермическую реакцию  [c.213]

    Для осуществления эндотермической реакции диссоциации метанола используется трубчатый реактор (рис. 2). Температура реакции 275—350 °С сырьем является парообразный метанол, содержащий достаточное количество водяного пара для превращения монооксида углерода в диоксид и сдвига равновесия реакции. В результате отмывки диоксида углерода в скруббере с алкиламином получается весьма чистый водород. Когда оборудование перестраивалось для целей мирного времени, в схему процесса была добавлена стадия превращения остаточного монооксида углерода в метан, который, как уже говорилось, безвреден для большинства процессов гидрирования. [c.150]

    И 2) взаимодействия этих продуктов с оставшимся метаном по следующей эндотермической реакции  [c.96]

    При получении газа с относительно низким содержанием метана процесс риформинга является эндотермическим. В простейшем случае, когда исходным сырьем является метан, протекает следующая обратимая реакция  [c.83]

    Обращает внимание, что чем выше температура, тем при одном и том же отношении метан кислород выше выход сажи. Это объясняется тем, что сажа не находится в равновесии с газообразными продуктами реакции и между не,й, углекислотой и парами воды идут эндотермические реакции газификации. Поэтому, если выдержать образовавшиеся при реакции продукты в адиабатических условиях достаточно долгое время, вся сажа превратится в окись углерода и водород. А так как реакции газификации эндотермичны, то температура смеси по мере расходования сажи будет понижаться. Понижение температуры будет происходить до тех пор, пока не будет израсходована вся сажа и пе будет достигнуто состояние равновесия. Этому рав- [c.547]

    Теплота этой экзотермической реакции равна —113 ккал вместо -ЬбО ккал для эндотермической реакции аммиака с метаном в отсутствии кислорода. [c.224]

    Реакционная смесь, входящая сверху в слой катализатора нри 400 С, постепенно нагревается, на глубине около 300 мм от верхнего уровня катализатора температура резко повышается о 500—530 (начало реакции) до 1000 С. Высота зоны, в которой потребляется все количество кислорода составляет 80—100 мм. В этой зоне наряду с экзотермическими процессами протекают эндотермические реакции. При дальнейшем прохождении газовой смеси через катализатор остаточный метан (обычно [c.110]


    Для эндотермической реакции атома иода с метаном не может быть меньше 31 ккал (129,79-10 Дж), а вероятно, она еще больше. Даже для этого минимального значения 31 ккал (129,79-10 Дж) атом иода должен столкнуться с огромным числом молекул метана (10 при 275 °С) прежде, чем произойдет реакция. В действительности атомы иода ие живут так долго — они рекомбинируются с образованием молекул иода, поэтому реакция протекает с незначительной скоростью. Атомы иода легко образуются, но они не могут отщепить водород от молекулы метана, и поэтому реакция иодирования не идет. [c.60]

    Описание процесса (рис. 17). Образование ацетилена — сильно эндотермическая реакция и тепло, необходимое для ее проведения, получается в результате экзотермического взаимодействия части сырья с кислородом. Реагирующие кислород и метан или пары легкого бензина раздельно перегреваются, смещиваются и воспламеняются. В результате протекающей с образованием пламени реакции образуется ацетилен. [c.35]

    Из изложенного ранее материала (см. стр. 34) следует, что при недостаточно высоких начальных температурах плазменной струи исходное вещество не успевает разложиться, что приводит к понижению выхода ацетилена. Можно предотвратить падение температуры плазменной струи до значений, ниже которых метан практически не разлагается, если на начальной стадии процесса ввести в плазменную струю некоторое количество тепла. Это количество тепла должно в некоторой мере скомпенсировать естественное снижение температуры благодаря эндотермическому характеру протекающих в струе химических реакций. Того же результата можно [c.60]

    Эти исследования стимулируются наличием громадных ресурсов и дешевизной метана, а также тем, что при пиролизе с малой продолжительностью реакции образуются главным образом этилен и ацетилен— важнейшее сырье для нефтехимического синтеза. При большей продолжительности пиролиза метан полностью превращается в углерод и водород. Так как все эти реакции являются эндотермическими, то равновес- [c.311]

    В начале реакционной зоны в газовой смеси еще присутствует свободный кислород и преобладают экзотермические реакции (1.6) и (1.7). В результате протекания этих реакций резко повышается температура и создаются условия, в которых непрореагировавший метан взаимодействует на катализаторе с водяным паром по эндотермической реакции (1.1), что приводит к понижению температуры. [c.26]

    Этилен горит светящим, мало коптящим пламенем. Является эндотермическим соединением. В высшей степени реактивен, благодаря наличию двойной связи. Характерной особенностью этилена (ненасыщенных соединений вообще) являются реакции присоединения реакции замещения — лишь редкое исключение. Этилен постоянен приблизительно до 350° выше этой температуры он начинает разлагаться на метан и ацетилен [c.36]

    Метан и азот в дальнейшем используют непосредственно в реакциях, связанных с получением аммиака, и в этом случае получают следующее отношение по объемным процентам (метан- -азот) углекислый газ=98 2. Конверсию метана осуществляют в две ступени. На первой ступени происходит неполное окисление метана с водяным паром по эндотермической реакции, т. е. с поглощением тепла. Реакция окисления гомологов метана с водяным паром протекает аналогично. На второй ступени происходит конверсия непрореагировавших углеводородов с кислородом воздуха по экзотермической реакции. Данный процесс осуществляют в шахтном реакторе при 900—1100°С на платиновом катализаторе. При реакции углеводородов с водяным паром и кислородом воздуха образуются водород и оксид углерода, а также некоторое количество диоксида углерода при полном окислении метана кислородом воздуха. Далее осуществляется конверсия оксида углерода с водяным паром по экзотермической реакции. [c.43]

    Такой автотермический способ разработан и осуществляется. Он основан на совмещении эндотермической реакции (метан с водяным паром) и экзотермической [c.244]

    Гомогенное окисление метана водяным паром или двуокисью углерода является в высшей степени эндотермической и относительно медленной реакцией. Скорость ее хорошо измерима при температуре около 1000° С, когда со значительной скоростью происходит также термическое разложение метана. Действительно, один из экспериментаторов [6] утверждает, что при температуре около 1000° С пар и метан непосредственно ые вступают в реакцию друг с другом, а в реакции участвуют более реакционно-способные продукты термического разложения мотана, которые и образуют окись углерода и водород. Среди легко выделяемых и идентифицируемых продуктов пиролиза метана следует отметить этилен и ацетилен [25, 26, 27 . Последние могут реагировать с водяным паром, образуя спирты, которые затем разлагаются с образованием окиси углерода, метана и водорода. Все это носит лишь предположительный характер, так как нет данных, подтверн дающих этот механизм. Реакция метана с двуокисью углерода является, по-видимому, еще более сложной, чем с водяным парол]. [c.311]


    В другом процессе, где источником кислорода также является воздух, применяются такие псевдоожиженные термостойкие материалы, как окиси алюминия, магния или кремния. Этуэлл [3] нагревал термостойкий материал до 1093° С, продувая воздух для выжигания остаточного углерода, отложившегося на термостойком материале во время последую-ш,их операций, и добавочный топочный газ. Горючий твердый материал поступает затем в псевдоожиженный слой никелевого катализатора вместе с предварительно нагретым метаном, паром и двуокисью углерода. Это тепло горячего термостойкого материала используется для эндотермической конверсии метана в синтез-газ. Способ отделения никелевого катализатора от термостойкого материала основан на разнице в размерах их частиц (частицы термостойкого материала меньше по величине). Частицы термостойкого материала выдуваются из слоя катализатора, состоящ его из более крупных частиц. При этом возникает другая трудная технологическая задача — транспортировка горячего твердого материала, тем более, что при необходимости работать при 30 ат уменьшение скорости реакции [21] обусловит потребность в более высоких температурах для данной конверсии. Гомогенное частичное окисление метана кислородом представляет интерес для промышленности с точки зрения (I) производства ацетилена и в качестве побочного продукта синтез-газа [5, 10, 7, 12, 2 и (2) производства синтез-газа в качестве целевого продукта при давлении около 30 ат [19, 12, 2]. Для термического процесса (без катализатора) необходима температура около 1240° С или выше, чтобы получить требуемую конверсию метана [19]. Первичная реакция является сильно экзотермической вследствие быстрой конверсии части метана до двуокиси углерода я водяного пара [22]. Затем следует эндотермическая медленная реакция остаточного метана с двуокисью углерода и водяным паром. Для уменьшения расхода кислорода на единицу объема сиптез-газа в-Германии [7] для эндотермической асти реакции применяются активные никелевые катализаторы. В Соединенных Штатах Америки приняты некаталитические реакции как часть гидроколь-процосса [19, 2] для синтеза жидких углеводородов из природного газа. [c.314]

    По этим причинам была разработана другая система, в которой эндотермические реакции конверсии совмещены с экзотерми Ч2СКИМ процессом сгорания части углеводорода при подаче в конвертор кислорода, благодаря чему суммарный процесс становится немного экзотермическим. Расчеты показывают, что для этой цели на конверсию надо подавать смесь СН4 и О2 в отношении 1 0,55, находящуюся вне пределов взрываемости, которые тем более не достигаются из-за разбавления смеси водяным паром. Объемное отношение последнего к метану в этом случае можно брать более ннзким, чем в отсутствие кислорода, а именно от 1 1 до (2,5- 3) 1 [c.88]

    В обеих установках компоненты газа, выходящего из печи низкотемпературного риформинга, находятся, по-видимому, в химическом равновесии, и дальнейшее образование метана может быть достигнуто только введением иового компонента или снижением температуры. В настоящее время для обогащения газа в процессе Газинтан используется каталитическая гидрогенизация, т. е. снижается температура (приблизительно до 350°С) и вводится дополнительный очищенный пар лигроина, реагирующий, с оставшимся водородом и паром. Температурный профиль во втором реакторе, однако, повышается с самого начала, так как при низкой температуре не происходит никакого эндотермического крекинга или риформинга, а избыточный водород обеспечивает немедленное начало экзотермических реакций гидрогенизации. Аналогично процессу КОГ и здесь желательно улучшить характеристики горения получаемого газа путем дополнительной стадии метанизации. Это обеспечивает удаление любого остаточного водорода, и после поглощения основной части двуокиси углерода, находящейся в газе, окончательный продукт становится полностью взаимозаменяемым с природным газом, содержащим главным образом метан. Выходное давление обычно близко -к 35 кгс/см (3,5 МПа). [c.109]

    При правильном подборе типов катализаторов, температуры и рабочего давления обе реакции идут до полного завершения, и абсорбированное тепло атомного реактора по эндотермической реакции первого типа в ходе протекания экзотермической реакции второго типа полностью высвобождается в реакторе-метанй-заторе. Получаемый в результате этого метан может либо осушаться, поскольку нет необходимости возвращать воду, и по трубопроводу поступать обратно в высокотемпературный реактор-реформатор, либо использоваться на месте в качестве высокосортного топлива. Как сообщается, в обоих случаях общий коэффициент полезного действия данной технологической схемы значительно выше, чем в других сравниваемых методах передачи тепловой энергии от высокотемпературного атомного источника потребителям, находящимся на значительном удалении от него. [c.229]

    Регенеративный реактор для термического крекинга метана. Такой реактор действует адиабатически в одном цикле из четырех фаз. Реактор заполнен керамической массой, которая попеременно нагревается и охлаждается метаном, который эндотермически крекируется в ацетилен. Между этими основными фазами находятся фазы удаления и очистки, таким образом, полный цикл будет следующим нагревание — удаление горючих газов — реакция — удаление реакционных газов. [c.109]

    СО + НаО СОа + На Для того, чтобы процесс окислительного пиролиза протекал в автотермическом режиме, необходимо обеспечить оптимальное соотношение количества метана, сгораюп его с выделением тепла по реакции (д) и количества его, подвергающегося эндотермической реакции пиролиза по реакции (а). Для этого устанавливают соотношение начальных объемов метана и кислорода в газовой смеси 1 0,65, что также лежит за пределами взры-ваемости метан-кислородных смесей. В этих условиях при установившемся режиме процесса на горение (реакция д) расходуется 55% метана, на образование ацетилена (реакция а) 23—25% и на образование сажи (реакция в) около 4%. Скорость подвода газа должна быть выше скорости распространения пламени, чтобы оно не распространялось в обратном направлении. [c.254]

    Обращает на себя внимание тог факт, что предельные теплопроизводительности горючей смеси и воздуха заметно различны для таких органических топлив, как метан (наименьшее тепловыделение), бензол и ацетилен (наибольшее тепловыделение). Это легко объясняется тем, что молекула метана СН образуется при резко выраженном экзотермическом эффекте (тепловыделении), молекула бензола СеНв — при слабо выраженном экзотермическом эффекте, а молекула ацетилена С2Н2 — при эффекте эндотермическом (теплопоглощении). Понятно, что при сжигании молекул указанных топлив, т. е. при их разрушении, проявляется обратный эффект — добавочного тепло-поглощения при образовании продуктов сгорания метана и бензола (соответственно в несколько меньшем размере) и добавочного тепловыделения при образовании продуктов сгорания ацетилена. [c.15]

    Здесь Аобр 298 — стандартная энтальпия образования метана. Поскольку она имеет отрицательное значение, то метан представляет собой экзотермическое соединение. Вещества с положительной стандартной энтальпией образования называют эндотермическими. К ним относятся этилен, бензол, ацетилен (см. рис. 1.5.4). [c.128]

    Основная реакция метода Саксе 2СН4 СаНг -Ь ЗНг — 95,5 ккал. Зта реакция — эндотермическая. Необходимое для реакции тепло обеспечивается горением в реакторе некоторого количества метана в кислороде, которые подаются одновременно. Температура реакции около 1500° С, а продолжительность нагрева (рассчитанная на вступивший в реакцию синтеза метан) составляет 0,001—0,01 сек. [c.22]

    Чтобы это осуществить, через реакционную камеру пропускают смесь метана, водяного пара к кислорода. Однако же реакция экзотермического окисления может доставить до статочное количестЮ тепла, способ-ное уравновесить эндотермическую реакцию системы метан— водяной пар лишь при применении больших количеств кислорода в общем все же прихо дится применять дополнительное обогревание реакционной камеры извне. Если вместо кислорода пользоваться воздухом, то получающиб ся газы будут содержать азот в этом случае, регулируя соотношение составных частей, можно- по лучить смесь, пригодную для синтеза аммиака. [c.312]

    Н — r-flHarpaMMa метан-метанольного цикла представлена на рис. 8.2 пунктирными линиями от начального состояния А до конечной точки I, причем эндотермические стадии обозначены вертикальными изотермами В — С и F — G, а экзотермические стадии изотермами D — Е и Н — I [593]. [c.402]

    Охват экзо- и эндотермических реакций гетерогенно-гомогенным механизмом был бы неполным без учета и каталитических реакций, требующих применения специальных активных контактов. К их числу относится так называемый мягкий катализ, позволяющий высокоселективно превращать этилен в окись этилена и метанол — в формальдегид при помощи серебряных контактов, нафталин — в фталевый ангидрид в присутствии нятиокиси ванадия и т. д. Механизм таких мягких каталитических реакций изучался в нашей лаборатории методом раздельного калориметрирования, т. е. в благоприятных для готерогенно-гомоген-ного катализа условиях катализаторы наносились топким слоем на поверхность стенок сосудов. В качестве покрытий применялись платина, серебро, пятиокись ванадия, бораты, силикаты, фосфаты и другие катализаторы. Объектами неполного окисления были метан, этилен, бутан-пронановая фракция нефтяных газов и метанол [11—13, 20—23, 41—45]. [c.374]

    В верхней части конвертора 8, заполненного никелевым катализатором, кислород воздуха окисляет часть СН4 по реакции (2). Вследствие экзотермячности этой реакции температура газовой смеси повышается до 950—1000°С. В остальной части аппарата лротекает эндотермическая реакция (I) между метаном, не прореагировавшим в трубчатой печи 9, и водяным паром и частично идет реакция (3). [c.178]

    Для достижения максимальных выходов водорода при кон-версин метана водяным паром представляет интерес полная конверсия метана по реакции (12) с непосредственным получением в одну стадию водорода и двуокиси углерода. Однако такой одностадийный процесс термодинамически невыгоден, так как при пониженных температурах конверсии в продуктах реакции остается довольно значительное количество метана, а при повышенных температурах газ будет содержать большое количество окиси углерода. Следовательно, эндотермический процесс по реакции (7) термодинамически выгодно вести при высоких температурах, а реакцию (1) —при низких температурах. Поэтому на практике процесс получения водорода путем конверсии метана водяным паром проводят в две раздельные стадии. Сначала при относительно высоких температурах конвертируют метан до окиси углерода и водорода, затем полученную окись углерода при более низких температурах превращают в СОг и водород. [c.123]

    Если в смесь метана с водяным паром ввести кислород, то эндотермический процэсс конверсии метана становится автотермичным. В табл. Е.2 приведены равновесные составы паро-кислородной конверсии СН в зависимости от температуры, давления и избытка водяного пара при постоянном отношении метан кислород = 1 0,6. [c.35]

    Наибольшую чувствительность к повышению углеродного эквивалента и содержания примесей серы проявляют катализаторы эндотермического ри-форминга. Селективность обычного катализатора эндотермической паровой конверсии углеводородов (типа ГИАП-16) вполне достаточна для переработки газообразного сырья различных месторождений с содержанием метана более 85% (об.) и гомологов — не более 14% (об.) (углеродный эквивалент не более 1,28). Считается, что современный катализатор должен обладать такой селективностью, которая обес- печила бы длительную эксплуатацию (3 года) без заметных выделений углерода и потери ак- 3 тивности, если риформинг 100%-ного метана о осуществляется прл критическом мoJ дам от- ношении пара к атому углерода в метане Н2О/СН4, равном 3.5. При этом срок службы [c.63]

    Вторым по значению (после карбидного) способом получения ацетилена является окислительный пиролиз метана. При 1400° С метан образует ацетилено-во-дородную смесь. Необходимое для этой эндотермической реакции тепло получается за счет сгорания части метана. Напишите уравнения этих двух реакций, суммируйте их. Как используют побочные продукты этого процесса  [c.42]


Смотреть страницы где упоминается термин Метан эндотермическая: [c.43]    [c.89]    [c.97]    [c.307]    [c.116]    [c.17]    [c.105]    [c.149]    [c.464]   
Справочник азотчика Издание 2 (1986) -- [ c.71 ]




ПОИСК





Смотрите так же термины и статьи:

Эндотермические реакции при крекинг и разложение метана



© 2025 chem21.info Реклама на сайте