Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Полиэтилен процесс

    Полиэтилен. Из этилена путем полимеризации получают один из важнейших полимеров — полиэтилен. Процесс образования полиэтилена можно изобразить следующей схемой. [c.36]

    В результате протекающих в облучаемом полиэтилене процессов изменяется плотность полимера. Это обусловливается постепенным снижением степени кристалличности полимера, изменением его надмолекулярной структуры, образованием пространственной молекулярной сетки и рядом других явлений. Зависимость плотности кристаллического полиэтилена при 20 С от дозы имеет минимум при 200—250 Мрад. В то же время плотность полиэтилена, измеренная при 150°С (выше температуры плавления кристаллитов), непрерывно увеличивается по мере возрастания поглощенной дозы излучения. Наблюдающееся при этом увеличение плотности обусловлено образованием более плотной простран- [c.19]


    Реакции звеньев полимерной цепи используются при получении синтетического эластомера хайпалона, представляющего собой сульфохлорированный полиэтилен. Процесс сульфохлорирования протекает через стадию образования свободных радикалов при воздействии на полимер смеси хлора и сернистого ангидрида  [c.270]

    В плане настоящей книги интерес представляют лишь те процессы, в которых из низкомолекулярных олефинов получаются искусственные вещества, такие как полиэтилен, нолиизобутилен и бутилкаучук. [c.222]

    Получение полиэтилена при среднем давлении. Способ получения полиэтилена при средних давлениях разработан в США фирмой Филлипс Петролеум Компани [61]. Процесс ведется при температуре 180—250° и давлении 35—105 ат. Этилен, предварительно полностью освобожденный от сернистых соединений, кислорода, водяных паров и углекислоты, растворяется под давлением при 20—30° в ксилольной фракции в количестве 7—9% вес. и подвергается полимеризации в трубчатом автоклаве над катализатором из окисей хрома и молибдена, нанесенных на окись алюминия или алюмосиликат. Целесообразнее применять большой избыток растворителя, чтобы полиэтилен оставался в растворе, а не отлагался на катализаторе, пассивируя его. Кроме того, при этом [c.223]

    Нейтрализацией известью верхнего слоя прудов кислого гудрона, смешением продуктов нейтрализации с асфальтом и последующим окислением воздухом изготовляют дорожный вяжущий материал. Этот процесс опробован на Ярославском НПЗ для старых прудов кислого гудрона. К кислому гудрону до окисления можно добавить полиэтилен, который блокирует водорастворимые соединения, и получить водостойкий вяжущий материал. Последний можно производить также термической обработкой водорастворимых соединений. [c.141]

    Необходимо повысить надежность средств регулирования процесса и управления им, чтобы исключить подачу избыточного количества инициатора повышенной концентрации в автоклавный реактор, а также накопление в системах инициатора и образование локализованных зон повышенной конверсии этилена в полиэтилен. [c.111]

    Открытие процесса полимеризации этилена привлекло к себе внимание по ряду причин. Во-первых, с теоретической точки зрения, так как в то время полагали, что этилен не может давать высокомолекулярного пластического материала. Во-вторых, открытие его можно рассматривать как пример чисто научного исследования, не представлявшего практического интереса для промышленности. В-третьих, в то время как из этилена получались низкомолекулярные полимеры, высокомолекулярных же пластических полиэтиленов не удавалось получить из этилена, приготовленного с применением тех же методов очистки. [c.166]


    Полиэтилен высокого давления (ВД) получается полимеризацией этилена в присутствии кислорода или перекисных инициаторов. Процесс протекает по цепному радикальному механизму. С повышением давления и температуры скорость реакции увеличивается. [c.5]

    Активность катализатора определяется соотношением алкилов алюминия и четыреххлористого титана. Изменяя это соотношение, можно регулировать процесс полимеризации и получать полимеры с заданными свойствами. При увеличении содержания четыреххлористого титана в сфере реакции возрастает скорость полимеризации этилена, значительно повышается выход полиэтилена, но уменьшается его молекулярный вес. Активность катализатора можно значительно повысить введением, третьего компонента. В промышленности обычно применяют диэтилалюминийхлорид, в присутствии которого легче регулировать процесс полимеризации и получать полиэтилен с необходимым молекулярным весом. Кроме того, диэтилалюминийхлорид является менее пожаро- и взрывоопасным, чем три-этилалюминий. [c.7]

    Вследствие наличия третичных атомов углерода полипропилен чувствителен к действию кислорода, особенно при повышенных температурах, что обусловливает его большую склонность к старению по сравнению с полиэтиленом и сополимерами этилена с пропиленом. Поэтому в процессе переработки в полипропилен добавляют стабилизаторы. [c.13]

    Образовавшийся раствор полиэтилена в бензине, ксилоле или ином жидком углеводороде подвергается затем центрифугированию, при котором полиэтилен-сырец отделяется, а растворитель подвергается отмывке от следов катализатора и осушке, после чего снова используется в процессе полимеризации. Полиэтилен-сырец подвергается обработке водой, метиловым или пропиловым спиртом для удаления остатков катализатора. Полученный в виде белого порошка полиэтилен сушится и дальше используется для изготовления различных изделий. [c.339]

    Полиэтилен при описанных выше процессах выпускается в виде порошка или гранул размером 3—4 мм. Антиокислители и красители обычно добавляют перед формированием готовых изделий. Из полиэтилена изготовляют пленки и полотна, трубы, волокна литые и другие изделия. [c.339]

    Конверсия этилена в полиэтилен и свойства полученного полимера зависят от температуры, давления, концентрации инициатора и времени полимеризации. При повышении давления увеличиваются степень конверсии, молекулярная масса, плотность и механическая прочность полиэтилена. При повышении температуры степень конверсии падает, а остальные показатели увеличиваются. Повышение концентрации кислорода приводит к увеличению степени конверсии и снижению молекулярной массы полимера. Оптимальное время процесса составляет 1—3 минуты, дальнейшее увеличение его не влияет на степень конверсии этилена в полиэтилен. [c.389]

    Только в 50-х годах были разработаны и реализованы в крупном промышленном масштабе процессы производства таких продуктов нефтехимического синтеза, как полиэтилен низкого давления (1953 г.), поликарбонатные пластмассы (1953 г.), полипропилен (1954 г.), полиэфирные волокна (1955 г.), полиформальдегидные смолы (1959 г.), поливинилхлорид, различные типы синтетического каучука, поверхностно-активные вещества и другие. [c.5]

    Технология производства многих важных для народного хозяйства продуктов требует, чтобы газ, участвующий в процессах, подавался под высоким давлением. Например, при производстве некоторых видов полиэтиленов необходимо сжатие газов до 250 МПа, а при производстве азотных удобрений реакции проводят при давлении 25—32 МПа. Добыча нефти со дна морей, закачка газов в пласт для увеличения выхода нефти требует газов, сжатых до 70 МПа. Транспортировка природных газов производится при давлении газа до 10 МПа. Даже для привода пневматических машин и инструментов, используемых для механизации работ, воздух сжимается до 0,9—1,5 МПа. [c.76]

    В реакторах, где происходит полимеризация, лишь часть этилена превращается в полиэтилен. Остальное количество возвращается при давлении 25 Мн м и подлежит повторному сжатию. В связи с этим, а также с необходимостью сравнительно часто ремонтировать цилиндры ступеней сверхвысокого давления, процесс сжатия разделяют, осуществляя первоначальное сжатие (до 25 Мн м ) в компрессорах первого каскада и последующее — в компрессорах второго каскада. [c.640]

    Полиэтилен низкой плотности существенно отличается по своим свойствам от полиэтилена, полученного на катализаторе Циглера он имеет более низкие плотность и температуру плавления. Было высказано предположение, что это связано с разветвленностью цепей продукта, синтезированного при высоком давлении. Объяснить, каким образом в процессе полимеризации могут образовываться разветвленные макромолекулы и какое они могут оказать влияние на плотность, и растворимость полимера  [c.285]

    К настоящему времени накоплены определенные данные об отношении к радиационному облучению различных полимеров. Так, для карбоцепных полимеров процессы сшивки превалируют для звеньев, содержащих боковые водородные атомы. И, наоборот, для тетразамещенных полиэтиленов процессы деструкции при радиационном облучении более возможны. [c.307]


    В случае очень больших тепловыделений, как, например, в процессе полимеризации этилена в полиэтилен, вопрос отвода тепла может оказаться онределяюш,им фактором в конструктивном оформ-, Ленин и расчете реактора. Так, обш ая длина змеевикового реактора для производства полиэтилена высокого давления (в. д.) определяется необходимой поверхностью теплоотвода. [c.271]

    В физических абсорбционных процессах в качестве абсорбентов применяют ди— метиловый эфир полиэтилен — гликоля (селексол-процесс), М-метилпирролидон, пропи — ленкарбонат (флюор-процесс), и др. В качестве химических [c.158]

    Катализаторы О — алкилирования. Из предложенных гомогенных (серная, фосфорная, борная кислоты) и гетерогенных (оксиды алюминия, цеолиты, сульфоугли и др.) кислотных катализаторов в промышленных процессах синтеза МТБЭ наибольшее распространение получили сульфированные ионообменные смолы. В качестве полимерной матрицы сульфокатионов используются полимеры различного типа поликонденсационные (фенол — формальдегидные), полимеризационные (сополимер стирола с ди — винилбензолом), фторированный полиэтилен, активированное стекловолокно и некоторые другие. Самыми распространенными являются сульфокатиониты со стиролдивинилбензольной матрицей двух типов с невысокой удельной поверхностью около 1 м /г [c.149]

    В технической литературе встречается сравнительно немного сведений о методах, применяемых для получения этого полимера в больших масштабах. Процесс фирмы Карбид энд Карбон, описанный Д. П. Хемиль-тоном [14] и Стрезером [291, включает непрерывный процесс полимеризации при давлении от 1400 до 3850 кг1см и температуре 200—300 в присутствии 0,01 % кислорода в качестве катализатора. Реакция протекает в проточной системе за один проход превращается в полимер от 4 до 20 % этилена. Избыток этилена направляется на повторное использование или на выделение, а полимерный продукт собирается по мере образования его. Не вступивший в реакцию этилен и увлеченный полимер непрерывным потоком поступают в сосуд, находящийся под давлением от 7 до 70 ат и при температуре 125—300°. Образовавшийся полиэтилен выводится из системы и охлаждается. [c.167]

    Как уже отмечалось выше, полиэтилен является родоначальником высокомолекулярных алифатических углеводородов. Хотя состав его незначительно колеблется, например, вследствие наличия небольшой непредельности, все же его основные свойства обусловлены простотой строения. Другие члены этого семейства включают полиметилен, полученный при разложении диазометана [1], продукты разложения других диазоуглеводородов, углеводороды, полученные по процессу Фишера— Тропша и ГайдроЯолз, или гидрированные полибутадиены [17]. [c.168]

    В реакторах, где происходит полимеразиция, лишь часть этилена превращается в полиэтилен. Остальное количество возвращается в систему при давлении 250 ат и подлежит повторному сжатию. В связи с этим процесс сжатия осуществляют первоначально в компрессорах первого каскада (до 250 ат), а затем в компрессорах второго каскада (до рабочего давления в реакторе). [c.240]

    Полиэтилен получают разными методами. По основному методу полимеризация проводится при температуре 190 °С и давлении 1500 ат, катализатором служит кислород в количестве 100—200 частей на миллион. В другом процессе этилен растворяют в углеводороде в раствор добавляют катализатор СГ2О3 на алюмосиликатном носителе температура процесса 93—150 °С, давление от 7 до35ат. Суспензия содержит около 5% этилена и 0,5% катализатора. По-новому, недавно появившемуся методу этилен [c.333]

    В большей части фильтров применяют гибкие перегородки (металлические сетки или ткань). В химической промышленности используют фильтрующие перегородки из волокон полиамидных (капрон), полиэфирных (лавсан), полиолефиновых (полиэтилен, полипропилен), хлорсодержащих (хлорин), акрилнитрильных (нитрон), стеклянных и др., а также фильтрующие перегородки из бумажной ленты одноразового использования. В исключительных случаях допускается применение ткани из натуральных волокон (хлопка, шелка, шерсти). Жесткие несжимаемые перегородки изготовляют из керамики н керметов из-за ограниченных размеров такие фильтрующие перегородки выполняют чаще всего в виде патронов. Преимущество таких перегородок состоит в возможности проведения процесса фильтрования при высоких температурах. Намывной слой предохраняет поры фильтрующей перегородки от быстрого закупоривания в случае разделения малокоицентрированных суспензий, содержащих тонкодисперсные твердые частицы. Намывной слой из порошкового или волокнистого материала (диатомит, перлит, асбест, целлюлоза и др.) наносят на фильтрующую перегородку предварительно (-(ДИ вводят в подлежащую очистке суспензию в определенных [c.285]

    Компаундирование полиэтилена с красителями и сажей проводится для получения окрашенного продукта, а также для улучшения механических свойств полиэтилена. При компаундировании применяются концентраты полиэтилена с различными красителями и сажей. Процесс компаундирования проводится в обогреваемых камерах и экструдерах, аналогичных применяемым для гомогенизации. Готовые гранулы окрашенного полиэтилена охлаждаются и промываются водой на ситах и поступают на упаковку. На установке компаундирования из всега перерабатываемого полимера 50 % будет получено черного цвета, а остальные—шести различных цветов. Черный полиэтилен применяется в основном для производства труб, окрашенный—для производства кабелей, проводов и предметов широкого потребления. [c.322]

    Так, известны различные методы получения полиэтилена. Первоначально промышленный метод заключался в проведении процесса при температуре около 200°С и давлении 1200—2000 атм при возбуждении реакции небольшими добавками кислорода. Однако в настоящее время полиэтилен получают при менее высоком и даже при атмосферном давлении в присутствии катализаторов. Хорошие результаты получены в случае применения в качестве катализатора триэтилалюминия А1(С2Н5)з совместно с четыреххлористым титаном Т1С14. Описано применение катализатора, состоящего из 8Юг и АЬОз с нанесенной на них окисью хрома, и др. В зависимости от условий процесса и вида катализатора получается полиэтилен с различным средним молекулярным весом, с различной степенью разветвленности цепей, степенью кристалличности и соответственно различными свойствами.  [c.562]

    Производство полиэтилена при среднем давлении имеет ряд преимуществ по сравнению с другими методами, К ним относятся доступность и неток-сичность катализаторов, возможность их многократного использования путем регенерации, простота технологического и аппаратурного оформления процесса, меньшая взрыво- и пожароопасность. Полиэтилен СД имеет более высокие показатели физико-механических свойств, чем полиэтилен высокого давления. [c.9]

    Полиэтилеи устойчив к действию кислот, щело чей, растворов солей и органических растворителей. Он разрушается только под действием сильных окислителей — концентрированных азотной и серной кислот п хромовой кислоты. При комнатной температуре полиэтилен нерастворим в известных растворителях, а при нагревании выше 70°С растворяется в толуоле, ксилоле, хлорированных углеводородах, декалине, тетралипе. Он устойчив к действию воды. Водопоглощение его за 30 суток при 20 °С не превышает 0,04%. Под влиянием кислорода воздуха, света и тепла полиэтилен теряет эластические свойства и пластичность, становится жестким и хрупким (происходит старение). Для замедления процесса старения в полиэтилен добавляют небольшие количества термостабилизаторов (ароматические амины, фенолы, сернистые соединения) и светостабилизаторов (сажа, графит). [c.10]

    Этилен СНа = СН2, пропилеи СНз—СН = СНг, бутилен СНз—СНг—СН = СНг, бутадиен (дивинил) СНг = СН—СН = СН2, будучи очень реакционноспособными соединениями, играют важную роль в промышленности органического синтеза. Из многочисленных реакций, в которые вступают олефины, наибольшее практическое значение имеют процессы полимеризации (полиэтилен, полипропилен, полиизобутилен и др.), гидратации (спирты), хлорирования (дихлорэтан, хлористый аллил и т. п.), окисления (окись этилена), оксосинтеза и некоторые другие реакции. Широкое распространение получили процессы гидратации олефиновых углеводородов. Таким способом получаются этиловый, изопропиловый и другие спирты. Этиловый спирт по объему производства занимает первое место среди всех других органических продуктов. С каждым годом спирт, получаемый из пишевого сырья, все более и более заменяется синтетическим, гидролизным и сульфитным (см. с. 205) синтетический спирт из этилена в несколько раз дешевле пишевого и требует меньших затрат труда. Синтетический спирт широко применяется в различных отраслях промышленности для получения синтетического каучука, целлулоида, ацеталь-дегида, уксусной кислоты, искусственного шелка, лекарственных соединений, душистых веществ, бездымного пороха, бутадиена, инсектицидов, в качестве растворителя и т. п. [c.169]

    В такокг аппарате конверсия этилена в полиэтилен идет полнее, но остановка мешалки приводит к полному нарушению процесса, вплоть до взрыва. [c.217]

    В процессе физической абсорбции извлечение кислых компонентов газа основано на различной растворимости компонентов газа в абсорбенте. В качестве абсорбентов в этих процессах используют смесь диметиловых эфиров полиэтилен-гликоля (процесс Селиксол ), метанол (процесс Ректизол ), [c.13]

    Улучшение кристаллической структуры с помощью модифика- торов структуры. Имеется много предложений по совершенствованию процессов депарафинизации и обезмасливания путем введения в сырьевой раствор различных добавок и присадок [144—146 и др.]. Для улучшения кристаллической структуры были рекомендованы депрессорные присадки, в особенности парафлоу (продукт конденсации хлорированного парафина с нафталином) в количестве 0,1 —1,6 вес. %, сантопур (продукт конденсации хлорированного парафина с фенолом) в количестве 0,05—1,0 вес. %, полисти-ролметакрилаты (0,2—0,6 вес. %) и ряд других присадок. В патентах [147—153] в качестве модификаторов структуры парафина в процессах депарафинизации и обезмасливания рекомендуются продукты алкилирования бензола, толуола или нафталина хлорированным парафином, полиэтилен и полиэтиленовые воски, смесь сополимера винилацетата и диалкилфумарата, а также парафино- / ме углеводороды is-С22 [153]. Добавка их позволяет снизить" кратность разбавления, улучшить четкость разделения парафина и масла и повысить скорость фильтрации. [c.155]

    Обычно процессы, протекающие при давлениях до 1000 ат, называются процессами высоких давлений-, процессы же, протекающие при давлениях выше 1000 ат, называются условно процессами свер.хвысоких давлений. Например, полиэтилен (политен) до 1955 г. получали при 2000—3000 ат сейчас этот процесс можно вести в присутствии катализаторов при нормальном (пониженном) давлении— синтез Циглера (стр. 590). Такие процессы, как синтез аммиака, синтез метанола, деструктивное гидрирование углей и тяжелых масел в бензин, проводятся под давлением 300—1000 ат. [c.348]


Смотреть страницы где упоминается термин Полиэтилен процесс: [c.5]    [c.261]    [c.358]    [c.15]    [c.196]    [c.677]    [c.285]    [c.170]    [c.23]    [c.168]    [c.621]    [c.6]    [c.136]   
Радиационная химия органических соединений (1963) -- [ c.314 , c.315 ]




ПОИСК







© 2025 chem21.info Реклама на сайте