Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Гетероциклические комплексы

    Гетероциклические комплексы металлов [c.473]

    Л-СВЯЗАННЫЕ ГЕТЕРОЦИКЛИЧЕСКИЕ КОМПЛЕКСЫ [c.353]

    Отмеченные зависимости показывают, что при наличии прочно связанного водорода в ароматических структурах пиролизной смолы и кислорода в сложных гетероциклических высокомолекулярных соединениях тяжелых нефтяных остатков снижается истинная плотность кокса из этого сырья. Торможен ие в процессе уплотнения углеродных комплексов продолжается до превращения кокса в графит, и требуются более высокие температуры для заверщения это. о процесса. В связи с этим можно сказать, что чем меньше истинная плотность кокса, тем больше энергия активации его графитации. [c.198]


    Многочисленные доказательства того, что связующее представляет собой лабильные ассоциированные комплексы, свидетельствуют о присутствии в пеках полярных соединений, в том числе фенолов и гетероциклических третичных оснований (аминов). Существенную роль могут играть также серосодержащие соединения. [c.108]

    В реакциях электрофильного замещения заместитель вступает в более реакционноспособное гетероциклическое кольцо, однако в отличие от пиррола электрофильная частица атакует не с -положение по отношению к группе NH, а р-положение. Это можно объяснить динамическими факторами, т. е. энергетической выгодностью образования а-комплекса. В том случае, если электрофильный реагент Х+ атакует -положение, то в образовавшемся а-комплексе (75) делокализация положительного заряда может произойти без нарушения ароматической системы бензольного кольца, энергия сопряжения которого 150 кДж/моль. Если электрофильный реагент атакует а-положение, то в образовавшемся о-комплексе (76) рассредоточение положительного заряда может осуществиться только с нарушением ароматической структуры бензольного кольца, что энергетически невыгодно. х х [c.531]

    Двуспиральная ДНК, в которой заложена вся наследственная информация вируса или клетки, представляет собой комплекс, образованный за счет нековалентных взаимодействий (в том числе водородных связей между гетероциклическими основаниями, см. 7.2) двух молекул ДНК. [c.261]

    Разработаны новые окислительные системы на основе пероксида водорода и комплексов переходных металлов (ванадия, молибдена, вольфрама), активные в окислении сернистых соединений. Синтезированы новые ванадиевые анионные пероксокомплексы с различными азотсодержащими гетероциклическими лигандами (пиридин, бипиридин, пиразин др.). Изучение состава и строения полученных пероксокомплексов проводили методами элементного анализа, ИК- и ЯМР-спектроскопии, а также рентгеноструктурного анализа [c.61]

    Показано, что из гетероциклического комплекса 3.13 получаются тетрафенилциклобутадиеновые комплексы никеля [44] [c.108]

    При окислении индоксила, тиоиндокснла или их производных образуются симметричные индигоидные красители, содержащие, подобно индиго, два одинаковых гетероциклических комплекса, связанные группой >С=С<- Несимметричные красители, в молекулах которых содержатся различные гетероциклы, получаются более сложным путем. [c.605]

    Интересно отметить, что 2-хлорметилпиридин также циклизуется с ЛТаМо(СО)зС5Н5 или МаМп(С0)5, давая устойчивые новые нятичленные гетероциклические комплексы 49 и 50 соответственно. Попытки получить аналогичные циклические соединения железа и вольфрама потерпели неудачу. [c.330]


    Асфальто-смолистые вещества являются неотъемлемым компонентом почти всех нефтей. Редко встречающиеся белые нефти представляют собой продукты разной степени обесцвечивания темных смолосодержащих нефтей, мигрировавших через толщи глин из глубоких недр земли. Содержание и химический состав асфальтосмолистых веществ в значительной мере влияют на выбор направления переработки нефти и набор технологических процессов в схемах действующих и перспективных нефтеперерабатывающих заводов. В связи с этим одним из главных показателей качества товарных нефтей при их классификации является относительное содержание асфальто-смолистых веществ. Количество асфальто-смолистых веществ в легких нефтях не превышает 4—5 вес. %, в тяжелых нефтях достигает 20 вес. % и более. Химическая природа асфальто-смолистых веществ точно не установлена. Она продолжает быть предметом глубоких исследований многих нефтехимиков. Причиной этого является исключительная сложность состава этих веществ, которые представляют собой комплексы полициклических, гетероциклических и металлоорганических соединений. [c.32]

    На начальной стадии погружения осадков (обычно 1,5—2,0 км) при росте температур до 50—60 °С полимерная структура керогена испытывает сравнительно небольшие изменения. Они сводятся преимущественно к декарбоксилированию и дегидратации, отрыву периферических функциональных групп за счет выделения в основном Н2О, СО2, МНз, На5 и СН4. В битумоидной фракции органического вещества несколько возрастает содержание углеводородов. В составе керогена постепенно повышается содержание углерода и водорода и снижается содержание гетероэлементов. При погружении на глубину 2000—3500 м и возрастании температур в недрах до 80—170°С начинается активная деструкция соединений, слагающих основную структуру керогена, сопровождающаяся образованием большего количества подвижных битуминозных веществ — до 30—40% (масс.) исходного керогена сапропелевого типа. Образующиеся биту1Линозные вещества (битум о иды) содержат уже практически весь комплекс алкано-циклоалканов и аренов от низко- до высокомолекулярных их представителей, а также значительное количество сложных гетероциклических соединений и асфальтено-смолистых веществ. Содержание битуминозных компонентов в органическом веществе возрастает в несколько раз. Эта стадия деструкции значительной части керогена с образованием преобладающей массы нефтяных углеводородов получила наименование главной фазы нефтеобразования (ГФН). [c.33]

    Однако детальные исследования асфальтенов арланской нефти с помощью комплекса физико-хи мических методов позволили рекомендовать другую структурную единицу молекулы асфальтенов. Эта единица представляет собой довольно рыхлую сетку гексагонально расположенных атомов углерода, входящих в состав ароматических, алициклических и гетероциклических структур. Кроме того, она включает значительное количество алкильных заместителей с числом углеродных атомов от 2 п до 5. Алициклические структуры могут быть представлены 1е только шестичлеиными, но п другими кольцами. [c.214]

    Металлосодержащие соединения нефти и нефтяных систем по своей химической природе - это соли металлов с веществами кислотного характера, элементоорганические соединения, полилигандные комплексы или тг-комплексы с ароматическими или гетероциклическими соединениями. [c.28]

    В метастабильном состоянии система характеризуется некоторым комплексом новых специфических свойств, обязанных проявлению межмолекулярных взаимодействий в системе, в большей степени между надмолекулярными структурами. Наиболее характерным свойством нефтяных систем в метастабильном состоянии яву яотся их склонность к фазообразованию. При этом вероятными компонентами отдельных фаз в случае их выделения являются концентраты высокомолекулярных структурирующихся компонентов системы, легкие низкомолекулярные углеводороды, не склонные к структурированию, а также гетероциклические неуглеводородные поверх1юстно-активные соединения нефти. [c.55]

    В связи с тем, что методы определения фактора устойчивости основаны на определении относительной оценки размеров асфаль-теновых частиц, а атом ванадия в ванадилпорфиринах, согласно [116], служит координационным центром в молекулах асфальтенов, наши положения о связи комплексообразующей способности исследуемых реагентов с ванадилпорфиринами нефтей и их влиянием на физико-химические свойства нефтей вполне правомерны. Анализ литературных данных также свидетельствует о существенном влиянии МПФ на структуру асфальтенов [84]. Ванадил-порфириновый комплекс соединяет листы — блоки конденсированных ароматических структур с атомами ванадия в азотной дырке . Поэтому, по предположительному структурно-молекулярному представлению, ванадил- и никельпорфирины не только являются составной частью молекул асфальтенов, но и выполняют связующую роль в процессе образования трехмерной структуры асфальтенов и двухмерных строительных блоков. Согласно [116], схематически можно представить соединения ванадилпорфирино-вого комплекса с конденсированными ароматическими блоками асфальтенов. Асфальтены можно, по-видимому, рассматривать как перекрестно связанные или ассоциированные конденсаты мульти-компонентных систем, включающих индивидуальные молекулы ароматических, порфириновых и нафтеновых циклов и гетероциклов. В благоприятных химических или физических условиях эти элементы соединяются мостиками или связями, образуя молекулы. Атомы таких металлов, как ванадий и никель могут участвовать и углеводородной или гетероциклической системе. [c.149]


    Азот в асфальтенах входит в состав таких гетероциклических структур, как пиррол, пиридин, хинолин, карбозол, индол и их бензологи, сосредоточиваясь преимущественно во внутренних частях крупных полициклических структур [6,74...78] или в ароматических кольцах. Важная форма существования азота - металлоорганические комплексы порфиринового и непорфиринового типов. [c.16]

    Наконец, смолисто-асфальтеновые вешества содержатся практически во всех нефтях. Их содержание и химический состав влияют на выбор направления переработки нефти. Легкие нефти содержат их в количе-ствахдо4-5% мае., тяжелые —20% мае. и более. Эти вещества представляют собой комплексы полициклических, гетероциклических (т.е. 8-, К-, 0-содержащих) и металлоорганических соединений, точный состав которых до сих пор не установлен. Известно лишь, что нейтральные смолы (полужидкие вещества темно-красного цвета) растворимы в петро-лейном эфире (легком бензине) асфальтены (бурые или черные вещества, твердые, хрупкие и неплавкие), не растворимые в петролейном эфире, растворимы в горячем бензоле карбены частично растворимы лишь в пиридине и сероуглероде карбоиды не растворяются ни в одном из известных органических или минеральных растворителей асфальтогеновые кислоты и их ангидриды растворимы в спирте, бензоле и хлороформе. [c.17]

    НИИ розовой, красной, фиолетовой и синей окраски растений и фруктов. А. являются глюкозидами антоцианидинов— гетероциклических соединений, содержащих кислород. По современным представлениям окраска зависит от строения А., величины pH клеточного сока и характера металла, образующего комплекс с А. в растении. Например, красная окраска обусловлена комплексом А. с Ре, синяя и фиолетовая — с Mg, белая [c.29]

    Осаждение подходящим противоионом не только увеличивает термодинамическую стабильность комплексов, но и резко ограничивает кинетические возможности их распада. Оса.ждение [СгОСи] катионами изохинолиния, хинальдиния, акридиния и других гетероциклических аминов, а [ rO lsJ —катионами [c.401]

    В последние десятилетия представления об ароматических соединениях как о веществах с определенными особенностями в химическом строении и в свойствах значительно расширилось. Известны разнообразные соединения, не содержащие бензольных циклов, но обладающие комплексом ароматических свойств и сходные по химическому характеру с бензолом. Свойства таких соединений обусловлены наличием у них особых трех-, пяти-, семичленных и некоторых еще больших ароматических циклов их называют небенэольными (или небензоидными) ароматическими соединениями (см. в более подробных курсах). Как мы увидим дальше, ароматические свойства, т. е. сходство с бензолом, наблюдаются и среди гетероциклических соединений (стр. 413, 430). [c.325]

    Получены комплексы Р1(П) и Р<1(11) - [M( N)( N)2] с гетероциклическими (С Ы) -циклометаллирующими лигандами на основе 2-фенилпиридина и 2-(2 -тиенил)-пиридина и амбидентатными N-лигaндaми и разработана методика их применения в качестве координационно-ненасыщенных комплексов-лигандов , взаимодействующих с М(С К ) комплексами-металлами , для синтеза новых гомо-, и гетеро-биядерных [M( N)( i- N)2M ( N)] комплексов, отличающихся как природой металлокомплексных М(С К) -фрагментов в их составе, так и характером их координации по отношению к мостиковым амбидентатным цианидным лигандам. Состав и строение 14 новых комплексов охарактеризовано методами ЯМР- ИК-, электронной спектроскопии, циклической вольтамперометрии. [c.62]

    Синтезирован перспективный класс светочувствительных энергонасыщенных соединений на основе ггерхлоратных комплексов d-металлов с полиазотистыми гетероциклическими лигандами и оптимизированы условия получения целевых соединений Исследована восприимчивость синтезированных солей и композиций к импульсному лазерному излучению (1,06 мкм). [c.46]

    С целью разработки методов получения молекулярно-организованных металлокомплексных систем с векторным фото- и элеюростимуллированным переносом заряда и энергии в настоящей работе на основе смешанно-лигандньпс циклометаллированных комплексов платиновых металлов 1ТЧ(11), Р<КП), Аи(Ш)] с гетероциклическими иминами - депротонированные формы 2- [c.51]

    Катализ комплексами переходных металлов используется также для циклообразования в различных вариантахсоолигомеризации 1,3-диснов с алкенами или алкинами [341], а также в синтезе всевоз.можных гетероциклических систем [34т]. [c.250]

    В литературе имеются работы, посвященные галогензамещению гетероциклических соединений [58—60] В данном разделе на нескольких примерах рассмотрено поведение гетероциклических соединений при галогенировании и возникающие при этом проблемы. Галогенирование соединений этого типа протекает иногда с большим трудом, а иногда очень легко. Пиридин представляет собой пример гетероцикла, с большим трудом поддающегося галогенированию в контролируемых условиях. Его устойчивость объясняется тем, что злектрофильные катализаторы, применяемые при галогенировании, или образующиеся в ходе реакции галогеноводородные кислоты присоединяются к пиридину с образованием соли, невосприимчивой по отношению к электрофильной атаке. Так, например, можно ra.noгенировать комплекс хлористого алюминия и пиридина, однако реакция останавливается по достижении 50%-ного выхода (по данным анализа) или 30—40%-ного выхода (по количеству выделенного продукта) [61]. В данном случае считают, что первый комплекс (I) является достаточно активным, однако второй комплекс (П) слишком неактивен и не подвергается замещению. Остроумным методом [c.455]

    В соответствии с этим, при гидрокрекинге подвергаются насыщению в первую очередь коксообразующие компоненты. При рассмотрении гидрообессеривания упоминалось, что в получаемом жидком продукте сокращается по сравнению с исходным сырьем количество асфальтенов (представляющих собой сложный комплекс ароматических, нафтеновых и гетероциклических структур) и частично разрушаются полициклические ароматические углеводороды, превращаясь в ароматические с меньшим числом колец. При более глубоком процессе гидрокрекинга происходит дальнейшее разрушение этих структур и переход от полициклических ароматических к моно- и бициклическим углеводородам — алкиларо-магическим, двухядерным алициклическим. Алкилбензолы могут отщеплять алкильную группу, но бензольное кольцо в условиях гидрокрекинга насыщается слабо. Если, например, взять за основу антрацен, то основное направление реакции выразится схемой  [c.252]

    Пятичлеиные ароматические гетероциклические соединения, такие, как. фуран, тпофен п пиррол, галогепнруются, нитруются и сульфируются совершенно так же, как и другие ароматические соединения. Они, как правило, гораздо реакционноспособнее бензола и сходны по своей реакционной способности с фенолом и анилином (гл. 22 и 23) поэтому для электрофильного замещения в ряду гетероциклических соединений часто не требуются сильные катализаторы, как для замещения в бензоле. Так как и пиррол, и фуран разлагаются в присутствии протонных кислот, для них необходимы несколько-иные условия проведения обычных реакций. В реакции сульфирования в этих случаях источником 30,, вместо дымящей серной кислоты служит комплекс, образуем .1Й пиридином и 80 в качестве нитрующего агента можпо применить ацетилнитрат. [c.633]

    Гидропероксиды алкил- и циклоалкилароматических углеводородов получают [375] при их жидкофазном окислении в присутствии берил-лиевых или молибденовых солей карбоновых кислот, а также в присутствии комплексов щелочных и щелочноземельных металлов с полиядер-ными ароматическими углеводородами и некоторыми гетероциклическими соединениями. [c.127]

    Связанные азотсодержащие гетероциклические системы представляют интерес вследствие их способности к образованию окрашенных комплексов с ионами металлов. 2-(2 -Бензимидазолил)-хинолин описан в литературе Его аналог, содержащий в четвертом положении фениль-ную группу, является новым соединением. Описанный в литературе, метод получения 2-(2 -бензимидазолил)-хинолина заключается во взаимодействии гетероциклического альдегида с о-фенилендиамином в присутствии палладиевого катализатора . Мы осуществили этот синтез более простым путем в присутствии ацетата меди по аналогии с получением 2-(а-фурил)-бензимидазола причем в полтора раза увеличили выход 2-(2 -бензими-дазолил)-хинолина. [c.36]


Смотреть страницы где упоминается термин Гетероциклические комплексы: [c.353]    [c.117]    [c.104]    [c.91]    [c.46]    [c.120]    [c.496]    [c.513]    [c.129]    [c.1111]    [c.1219]    [c.218]    [c.70]    [c.112]   
Металлоорганические соединения переходных элементов (1972) -- [ c.0 ]




ПОИСК







© 2025 chem21.info Реклама на сайте