Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Лиганды цианидные

    Комплексы металлов с неорганическими лигандами широко применяют как в качественном, так и в количественном анализе. Среди таких комплексов имеют большое значение аммиакаты, галог( нидные и род-анидные комплексы реже находят применение пер-оксидные, цианидные, фосфатные, сульфатные и сульфитные комплексы. [c.265]

    Наиболее важен эффект обобществления d-AO центрального атома ме1 алла с вакантными тг -орбиталями таких лигандов (С = О, С N) в карбонильных и цианидных комплексах. На рис. 11.15 пока ана структура одной из /jj,-MO гексакарбонила хрома, [c.438]


    Рассмотренные примеры показывают, что хелатообразователь связывается с ионом металла значительно сильнее, чем обычный родственный ему лиганд. Из данных табл. 20-8 можно видеть, что константы образования этилендиаминовых комплексов на 8-10 порядков (т.е. приблизительно в миллиард раз) больше, чем константы образования комплексов тех же ионов металла с лигандами ЫНд. Связь аммиака и аминных хела-тообразователей с металлом относится к одному типу в обоих случаях неподеленная пара электронов на атоме азота в аммиаке или амине взаимодействует с металлом. Различие в константах образования комплексов с ННз и этилендиамином является отражением повышенной устойчивости последних, обусловленной вхождением связывающихся атомов лигандов в одну хелатную молекулу. Эта повышенная устойчивость иногда называется хелатным эффектом. Однако цианидный ион СК (который связывается с металлом через атом углерода) характеризуется намного более сильным притяжением к металлам, чем азотный атом аминных лигандов. Как показывают данные табл. 20-8, константы образования для циа-нидньгх комплексов на 3-13 порядков величины больше, чем для соответствующих этилендиаминовых комплексов. [c.245]

    В одно из обменивающихся веществ вводят в качестве метки радиоактивный или стабильный изотоп, а затем в ходе реакции измеряют изменение количества меченых атомов в другом веществе. Реакции электронного обмена особенно интересны тем, что константа скорости обмена электронов пропорциональна току обмена соответствующей электрохимической реакции (разд. 31.5.3). Примечательно, что все участники обменной реакции имеют одинаковый знак заряда, в результате чего между ними действуют значительные кулоновские силы отталкивания. Несмотря на это, реакции электронного обмена протекают с большой скоростью, период полупревращения составляет доли секунды. Высокая скорость этих реакций объясняется прежде всего тем, что мало различаются размеры координационных сфер участников реакции, что характерно как для анионов оксокислот марганца, так и для цианидных комплексов железа. В энергию активации такого рода реакций вносят вклад следующие компоненты энергия, необходимая для преодоления кулоновского отталкивания, энергия выравнивания размеров координационной сферы и энергия, связанная с туннельным переходом электрона от одного участника реакции к другому. Энергия, связанная с различием размеров координационной сферы, качественно может быть оценена следующим образом. Прежде чем произойдет адиабатический электронный переход (т. е. переход с минимальной затратой энергии), должны стать почти одинаковыми расстояния между центральным атомом и лигандами для реакции (1606), например, расстояние между Ре + и Н2О должно увеличиться настолько, чтобы сравняться с расстоянием между Ре2+ и Н2О. Для такого изменения расстояния необходима затрата некоторой энергии (энергии активации). Очевидно, реакции с электронными переходами протекают особенно быстро в том случае, если эти расстояния мало отличаются для соединений с различной степенью окисления. [c.203]


    Рассмотрите расщепление и заполнение электронами -уровней цент- ральных атомов для цианидных комплексов (сильное поле лигандов) железа и кобальта в степени окисления +2 (конфигурации d и dP). Объясните -Причину различной устойчивости этих комплексов. [c.642]

    Наиболее важен эффект обобществления d-AO центрального атома ме1 алла с вакантными я -орбиталями таких лигандов (С = О, С N) в карбонильных и цианидных комплексах. На рис. [c.438]

    Цианид-ион в водных раствора> бесцветен, сильно гидролизуется, обладает восстановительными свойствами, является очень эффективным лигандом и образует многочисленные весьма устойчивые цианидные комплексы с катионами многих металлов. [c.457]

    Наблюдающееся в протонных растворителях большое смещение резонансного сигнала Со в. спектре (н-Ви)4М Со(СЫ)е рекомендовалось использовать как меру способности таких растворителей создавать водородные связи [395]. В протонных растворителях, образующих с цианидными лигандами водородные связи типа 5 o—С = М- -Н—5, наблюдается сдвиг резонансного сигнала o в слабое поле. С помощью o удается обнаружить различие даже между НгО и ОгО в этом случае разность химических сдвигов, равная приблизительно 1 млн , свидетельствует о том, что ОаО является менее эффективным донором водородных связей [395]. [c.477]

    Рений(1У) и рений(У) образуют комплексные соединения с цианид-, роданид-, сульфит- и ферроцианид-ионами, с аминами, аминокислотами, диоксимами, оксикислотами и многими другими кислород-, азот-, серу- и фосфорсодержащими лигандами. Эти соединения устойчивы в водных растворах и широко используются в аналитической химии рения. Интересно отметить, что образование цианидных комплексов характерно для рения в степенях окисления от О до -(-6. [c.30]

    Соединяясь с водородом, дициан образует циановодород - очень слабую синильную кислоту H N - один из самых сильных неорганических ядов. Цианидный анион N , в котором на каждом из атомов локализована неподеленная электронная пара, является чрезвычайно распространенным лигандом в комплексах переходных металлов. [c.313]

    Комплексы никеля(П) с цианидными или фосфорсодержащими лигандами также являются активными катализаторами позиционной изомеризации олефинов. [c.577]

    Изменение стандартного (реального) потенциала вследствие реакций комплексообразования используют для стабилизации в растворе ионов металлов. Например, как следует из табл. 14.2, цианидный комплекс золота(I) наиболее устойчив по отношению к реакциям окисления некоторые неорганические лиганды, указанные в табл. 14.3, стабилизируют ионы Fe +, в то время как органические — ионы Fe +. [c.269]

    При этом полагают, что каждая молекула СО предоставляет и общее пользование с атомом железа два электрона атома углерода. В действительности химическая связь в карбонилах железа не ограничивается донорно-акцепторным взаимодействием, а включает и л-да-тивную связь [2], аналогично тому, как показано на примере гексацианидов железа (И) и (П1). Однако СО — более сильный акцептор электронов металла-комплексообразователя, чем ион СЫ . Наличие на последнем отрицательного заряда является причиной меньщей прочности я-дативной связи в цианидных комплексах, нежели в карбонильных, где лиганд ие имеет заряда. [c.134]

    В связи с этим ТКП в принципе не может учесть ряда важных эффектов, определяющих природу химической связи в координационных соединениях. Так, ТКП неприложима к гг-комплексам с многоцентровыми орбиталями лигандов, в ТКП не укладываются представления о дативной связи, обусловленной донированием электронной плотности -электронных пар на вакантные орбитали лиганда (связь, аналогичная донорно-акцепторной и играющая существенную роль при образовании некоторых комплексов сильных полей лигандов, например цианидных). Вообще все характеристики кокшлекса, проявляющиеся в поведении лиганда (необычные реакции координированных лигандов, перерасп деление плотносги неспаренных электронов в парамагнитных комплексах по орбиталям [c.433]

    В связи с этим ТКП в принципе не может учесть ряда важных эффектов, определяющих природу химической связи в координационных соединениях. Так, ТКП неприложима к я-комплексам с многоцентровыми орбиталями лигандов, в ТКП не укладываются представления о дативной связи, обусловленной донированием электронной плотности -электронных пар на вакантные орбитали лиганда (связь, аналогичная донорно-акцепторной и играющая существенную роль при образовании некоторых комплексов сильных полей лигандов, например цианидных). Вообще все характе- [c.187]

    Учет л-связывання приводит к включению t2g-A0 металла в общие с лигандами МО. Именно этог эффект объясняет возможность образования дативных связей металла с лигандами, передачу электронной плотности с дважды занятых t2g-A0 металла на вакантные я -орбитали лиганда. Особенно важен этот эффект при образовании цианидных, карбонильных (в качестве лиганда соответственно группы С = К и С = 0), олефиновых комплексов и так называемых сэндвичевых металлоорганических соединений, которые являются, без сомнения, координационными соединениями. [c.191]


    Связывание в комплексные ионы служит средством сдвига равновесия реакций. Очень характерны трансформации в ряду активности металлов, если раствор содержит какой-либо мощный комплексообразующий лиганд. Так, железо не вытесняет меди из аммиачных растворов медного купороса. Цинк не восстанавливает платины из растворов H2fPt( N)4], а растворяется в них с выделением водорода. Наоборот, в растворах, содержащих комплексообразующие агенты, легко растворяются даже благородные металлы так, общеизвестно окисление Au и Та азотной кислотой в присутствии НС1 и HF соответственно, растворение золота в цианидных ваннах цод действием кислорода воздуха. [c.53]

    Одно время применяли так называемый магнитный критерий типа связи,согласно которому связи в ннзкоспиновых комплексах ковалентны, а высокоспиновые комплексы имеют ионную связь. Если низкоспиновость обусловлена принудительным спариванием электронов с образованием дативных связей, например, в цианидных комплексах переходных металлов, то действительно очень велика роль ковалентности. Но в некоторых случаях переход от высокоспиновых комплексов к низкоспиновым происходит при одном и том же характере связи за счет понижения симметрии. Иногда монодентатные лиганды образуют высокоспиновые комплексы, а аналогичные хелаты являются низкоспиновыми. Более того, некоторые комплексы имеют изомерные конфигурации (тетраэдрическую и квадратную) с разными магнитными свойствами. Природа снязи в них одинакова. Поэтому в настоящее время магнитный критерий для характеристики типа связи почти не применяется. [c.132]

    В цианидном комплексе [Ре(СЫ)б] лиганды — СМ являются настолько сильными, что заставляют потесниться собственные электроны иона-комплексообразователя Ре + и занимают освободившиеся З -орбитали, как показано на схеме справа. Очевидно, что прочность комплекса [Ре(СЫ)б] -. .., чем [РеРб] . [c.198]

    Комплексные цианиды Ме4[Э(СМ)в1 и Meз[Э( N)в] известны и характерны для железа и кобальта. Никель образует лишь комплекс первого типа (степень окисления +2). Особая устойчивость этих комплексов подтверждается и тем фактом, что удается выделить в свободном состоянии и соответствующие комплексные кислоты Н4[Э(СЫ)е1 и HJЭ( N) l. Для цианидных комплексов Ре, Со, N1 характерно замещение лигандов N на друпге (Н.дО, NH, ,, СО, N0, N0, N0+ и т. п.). Такие соединения называются прусси- [c.411]

    Фторидные комплексы такого типа неизвестны. Близко к галоге-нидным комплексам примыкают цианидные, которые особенно устойчивы для платины (для [Р1(СК)4]"- рЛ нсст 41). Для рутения и осмия в цианидных комплексах характерно к. ч. 6 К4ГЭ(СМ)в]. Известны и соответствующие кислоты Н4[Э(СК)в], представляющие собой бесцветные кристаллические вещества. Для платиноидов в степени окисления +2 известны роданидные (На[Р1 (СК5)4], Р- нест 28), оксалатные [3(0204)2] и комплексы с более сложными органическими лигандами. [c.424]

    Комплексные соединения, в которых платиноид выступает в степени окисления +4, известны для всех элементов, но особенно распространены для платины. Октаэдрические комплексы [ЭГв1 получены с Р и С1 для всех платиноидов, асВг и1 —лишь для некоторых. Р1 (+4) образует также гидроксокомплексы [Р1(ОН)б] , что подчеркивает амфотерный характер соответствующего гидроксида, цианидные [Pt (СЫ)в роданидные [Р1(СЫ5)в1 и неоднородные комплексы, где лигандами выступают и галогенид-ионы. Исследование структуры этих комплексов явилось экспериментальной основой современной теории строения координационных соединений. В комплексных аммиакатах [Р1 (ЫНз)о]Г4 возможно взаимное замещение между внутренней и внешней сферами, причем продуктами такого замещения являются все возможные комбинации  [c.425]

    По природе лигандов. Если лигандом является вода, комплексы называются аквокомплексами [Со(Н20)б]504, (Си(Н90)4](Ы0з)2. Комплексы, образованные аммиаком, — аммиакаты [Ад(ЫНз)2]С1, [Си(ЫНз)4]504, [Со(МНз)б]С12. Оксалатные, карбонатные, цианидные, галогенидные и другие комплексы, содержащие в качестве лигандов анионы различных кислот, называют ацидокомплексами. Например, К4[Ре(СН)б] и К2[Н514] — циа- [c.146]

    Комплексы с другими неорганическими лигандами. Устойчивые цианидные комплексы образуются с ионами меди, кадмия, цинка, железа(П1) и железа (II), кобальта, никеля и др. Однако в связи с большой ядовитостью цианид мало применяют в анализе. Его использование в анализе ограничивается маскированием посторонних ионов при определени некоторых ионов другими методами, хотя в принципе возможно использование цианида в качестве титранта. [c.268]

    По природе лигандов. Если лигандом является вода, комплексы называются аквакомплексами [Со(Н20)в]804, [Си(Н20)4](К0з)2. Комплексы, образованные аммиаком, — аммиакаты [Ag(NHз)2] l, [ u(NHз)4]S04, [ o(NHз)6] l2 Оксалатные, карбонатные, цианидные, галогенидные и другие комплексы, содержащие в качестве лигандов анионы различных кислот, называют ацидокомплексами. Например, К4[Ре(СК)б] и К2[Н 14] — цианидный и иодид-ный ацидокомплексы. Соединения с ОН-группами н виде лигандов называют гидроксокомплексаА и, например Кз[А1(ОН)б]. [c.106]

    Me4[Э( NS)6], Мез[Э(СК8)б]), оксалатные (Мб2[Э(С204)2], Ме1[Э(С204)з]). Но особенно характерны и устойчивы цианидные комплексы, например K4[Fe( N)( ], Kз[Fe( N)6]. Дело в том, что. лиганды, N возглавляющие спектрохимический ряд, образуют низкоспиновые комплексы, устойчивость которых весьма высока. [c.493]

    Комплексные соединения, в которых платиноид выступает в степени окислс ния +4, известны для всех элементов, но особенно распространены для платины. Октаэдрические комплексы [ЭГй] получены с Г и С1 для всех платиноидов, а г Вг и Г — лишь для некоторых. Р1(- -4) образует таклсе гидроксокомплексы [Р1(0Н)в]2 , что подчеркивает амфотерный характер соответствующего идрокси-да, цианидные [Р1(СК)с] , роданидные [Pt( NS)6] и неоднородные комплексы, где лигандами выступают и галогенид-ионы. Исследование структуры этих комплексов явилось. экспериментальной основой современной теории строения координационных соединений. Характерной для Р1(- -4) является сильная двухосновная кислота Н2[Р( С1г1] и ее соли. [c.500]

    Получены комплексы Р1(П) и Р<1(11) - [M( N)( N)2] с гетероциклическими (С Ы) -циклометаллирующими лигандами на основе 2-фенилпиридина и 2-(2 -тиенил)-пиридина и амбидентатными N-лигaндaми и разработана методика их применения в качестве координационно-ненасыщенных комплексов-лигандов , взаимодействующих с М(С К ) комплексами-металлами , для синтеза новых гомо-, и гетеро-биядерных [M( N)( i- N)2M ( N)] комплексов, отличающихся как природой металлокомплексных М(С К) -фрагментов в их составе, так и характером их координации по отношению к мостиковым амбидентатным цианидным лигандам. Состав и строение 14 новых комплексов охарактеризовано методами ЯМР- ИК-, электронной спектроскопии, циклической вольтамперометрии. [c.62]

    Кроме комплексных анионов, е1 состав которых входит металл, восстанавливающийся на катоде, в электролите могут присутствовать комплерссы катионного характера. К таким электролитам, применяемым в гальваностегии, относятся растворы аммиачных солей (аммиакатов) цинка, кадмия и меди, аминокомплексных соединений с органическими лигандами. В некоторых случаях восстановление этих ионов не требует большой поляризации катода, так как они разряжаются как обычные гидратированные или сольватированные ионы. Константа нестойкости этих комплексов больше, чем цианидных комплексных анионов В присутствии избытка цианида. Выделение металла, например, [c.244]

    На протяжении многих лет никак не удавалось решить проблему устойчивости комплексов переходных металлов. В самом деле, почему циаиидная группа так легко образует комплексы с этими элементами, тогда как атом углерода, содержащийся в других группах, например в метильной, связей с ними не образует Почему переходные металлы, а не какие-либо другие металлы (бериллий, алюминий и др.) образуют цианидные комплексы В гексацианоферрат(И)-ионе Ре(СН)б", например, атом железа формально имеет заряд 4—при допущении, что он образует шесть ковалентных связей с шестью лигандами тогда, каким же образом столь большой отрицательный заряд согласуется с тенденцией металлов терять электроны и образовывать положительные ионы  [c.484]

    Соединения трех-, двух- и одновалентного рения образуются при действии восстановителей в средах неводных растворителей и в атмосфере инертных газов. На воздухе и в водных растворах рений в указанных валентных состояниях подвержен гидролизу и окислению. Наиболее устойчивыми соединениями рения в этих валентных состояниях являются л-комплексы с карбонилом, за-меш,енными фосфинами, диарсинами и др., поскольку эти лиганды способны стабилизировать низшие валентные состояния. Степени окисления О и +1 зафиксированы в цианидных комплексах, а О и —1 — в соединениях с карбонилом. Показано, что при полярографическом восстановлении Ке(УП) в растворах КС1 восстановление идет до соединения с формальной валентностью рения —1. Полагают, что соединение содержит ренид -ион Re . [c.10]

    Амбидентпатными лигандами называют такие лиганды, которые могут координироваться с центральным атомом двумя или более способами. Например, цианидный лиганд может координироваться следующим образом М - СМ, М - МС, М - СК [c.507]

    Наиболее интересной и важной особенностью комплексных соединений является то, что свойства как иона металла, так и лиганда в комплексе существенно изменяются по сравнению со свойствами свободных металла и лиганда. Иногда эти изменения разительны. Например, из раствора соли [Со(ЫНз)4С12]С1 раствором нитрата серебра осаждается только одна треть хлора. Или известно, что цианид калия является одним из сильнейших ядов, в то же время каждый химик знает, что красная кровяная соль, гексацианофер-рат(И1) калия (феррицианид калия) Кз[Ре(СМ)в], вполне безопасна, хотя содержит в своем составе цианидный ион. [c.38]


Смотреть страницы где упоминается термин Лиганды цианидные: [c.33]    [c.57]    [c.189]    [c.314]    [c.62]    [c.269]    [c.326]    [c.677]    [c.418]    [c.15]    [c.388]    [c.389]    [c.2108]    [c.388]    [c.389]    [c.314]   
Химия координационных соединений (1985) -- [ c.173 , c.174 ]




ПОИСК





Смотрите так же термины и статьи:

Цианидный ИСЭ



© 2024 chem21.info Реклама на сайте