Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Взаимодействие с ароматическими и гетероциклическими соединениями

    ЭЛЕКТРОННЫЕ ВЗАИМОДЕЙСТВИЯ И ИНТЕНСИВНОСТИ ПОЛОС СН-КОЛЕБАНИЯ В ИК-СПЕКТРАХ АРОМАТИЧЕСКИХ ГЕТЕРОЦИКЛИЧЕСКИХ СОЕДИНЕНИЯ [c.100]

    ЭЛЕКТРОННЫЕ ВЗАИМОДЕЙСТВИЯ И ИНТЕНСИВНОСТИ ПОЛОС СН-КОЛЕБАНИЙ В ИК-СПЕКТРАХ АРОМАТИЧЕСКИХ ГЕТЕРОЦИКЛИЧЕСКИХ СОЕДИНЕНИИ [c.109]

    В ряду ароматических гетероциклических соединений старшинство взаимодействий пар атомов определяется последовательностью  [c.92]


    По мере повышения температуры в результате взаимодействия между составными частями пластической массы, выделения парогазовых продуктов термодеструкции происходит вспучивание загрузки, увеличение ее объема, которое. заканчивается отверждением пластической массы с образованием твердого полукокса. Одновременно происходит бурное выделение газов, паров воды и смолы, подвергающихся вторичным процессам пиролиза у стен камеры коксования и в подсводовом пространстве. Так как температура в этих частях печи велика ( 1100 - 1200°С), образуются наиболее термически стабильные соединения - водород, метан, ароматические углеводороды и их производные. Содержащиеся в исходной шихте кислород, азот и сера в конечном итоге оказываются в составе также наиболее термически стабильных соединений сероводорода, цианистого водорода, дисульфида углерода, серо-и азотсодержащих гетероциклических соединений (тиофен, пиридин и их гомологи). [c.56]

    И обычно оба явления рассматривают вместе. Например, низкомолекулярные ароматические и гетероциклические соединения (фенол и пиридин) сильнее задерживаются в гранулах геля, чем это можно ожидать вследствие диффузии. В отсутствие взаимодействия веществ с фазой геля Кя = 0 и /Сз=0, и общее уравнение приобретает первоначальный вид. [c.240]

    Более сложная картина наблюдается для ароматических и гетероциклических соединений, адсорбция которых может сопровождаться л-электронным взаимодействием с поверхностью металла. Такому взаимодействию естественно благоприятствует наличие положительных зарядов на поверхности электрода и, наоборот, прп достаточно большом отрицательном заряде поверхности в результате отталкивания л-электронов происходит изменение ориентации адсорбированных органических молекул. Таким образом, поверхностная активность органических веществ, молекулы которых обладают системой сопряженных л-электронных связей, характеризуется наличием двух адсорбционных состояний. Эту особенность и отражает кривая 3 на рис. 2.7, состоящая из двух участков, каждый из которых дает зависимость — АС° от Е для соответствующей ориентации молекул адсорбата. [c.47]

    Представители данной группы гетероциклических соединений в той или иной степени проявляют ароматические свойства и, следовательно, должны иметь электронное строение, близкое к бензолу. Таким образом, следует ожидать, что в ароматических гетероциклах имеет место такое взаимодействие /)-орбиталей -гибридных атомов углерода с электронами гетероатомов, которое обеспечивает формирование единой 7с-электронной системы, аналогичной бензолу. [c.416]


    В качестве гетероатомов чаще всего встречаются азот, кислород и сера. Гетероциклические соединения делят по размерам цикла и по числу гетероатомов в цикле. Наиболее важными являются пяти- и шестичленные гетероциклы с одним и двумя гетероатомами. Типичные гетероциклические соединения обладают ароматическим характером у пятичленных циклов неподеленные электронные пары гетероатомов вступают во взаимодействие с я-электронами двойных связей, образуя единую шестиэлектронную сопряженную систему, аналогичную таковой бензола, удовлетворяющую правилу Хюккеля (т. е. содержащую 4 + 2я- и р-электронов). [c.148]

    Многие органические вещества, содержащиеся в сточных водах, являются слабыми электролитами и в водных растворах частично ионизируются. К ним относятся фенолы, ароматические и алифатические карбоновые кислоты, ароматические и алифатические амины и многие гетероциклические соединения. Растворимость ионизированных молекул значительно выше, чем неионизированных. На рис. 1У-12 представлены изотермы адсорбции ионов производных бензола из водных растворов на обеззоленном активном угле КАД [22]. Для сравнения иа этом же рисунке штриховой линией показаны изотермы адсорбции соответствующих неионизированных молекул. Из рисунка видно, что во всех случаях адсорбция органических ионов растет с увеличением концентрации раствора медленнее, чем адсорбция неионизированных молекул того же вещества. Органические ароматические ионы адсорбируются активным углем независимо от знака их заряда. В основе их адсорбции лежит дисперсионное взаимодействие с атомами поверхности адсорбента. [c.89]

    Вицинальные динитрилы (1.55), производные как алифатических, так и ароматических и гетероциклических соединений, легко взаимодействуют с различными нуклеофильными, электрофильными, а иногда радикальными реагентами. Так, динитрил янтарной кислоты (1.55, Н-Н) циклизуется под действием кислот [129, 130], оснований (жидкого аммиака, аминов, амида натрия) [131], гидропероксидов [132] или восстановителей (литийалюминийгидрида) [133 в соответствующие [c.19]

    Полициклические ароматические углеводороды и некоторые гетероциклические соединения реагируют значительно активнее бензола. Наиример, антрацен реагирует с фенильными радикалами в 250 раз быстрее, а также взаимодействует с менее реакционно- [c.583]

    Кривые дифференциальной емкости позволяют также иногда определить, как ориентируется адсорбционная молекула на поверхности. В работе [66] было показано, что в отличие от алифатических соединений, для которых оба максимума на кривых С—ср связаны с процессами адсорбции, для ароматических или гетероциклических соединений, например анилина, этим процессам отвечают только катодные максимумы. Анодные же связаны с процессом переориентации молекул анилина на поверхности ртути вертикальное расположение молекул, характерное для отрицательно заряженной поверхности, сменяется плоским расположением, при котором я-электроны бензольного кольца вступают во взаимодействие с положительными зарядами пов-"рхности ртути. [c.141]

    В этой главе мы попытались рассмотреть работы обоих типов. Краткое введение касается происхождения инфракрасных спектров, классификации молекулярных колебаний, свойств симметрии молекул. Мы стремились прежде всего к доступности изложения часто для приближенно верных утверждений не указаны ограничения, так как глава предназначена скорее для химика, изучающего гетероциклические соединения, чем для физико-химика. После обсуждения ряда общих вопросов отдельные группы соединений рассматриваются в зависимости от размера кольца. Соединения с пяти- и шестичленными кольцами разделены на содержащие карбонильную группу в кольце и не содержащие ее, на ароматические и неароматические, а также в соответствии с числом, взаимным расположением и типом гетероатомов . В каждом из этих разделов сначала собраны работы, в которых предприняты попытки, более или менее полного отнесения колебаний молекул (обычно они имеются только для простейших соединений). Затем мы пытались обсудить данные о замещенных молекулах. В последнем разделе рассмотрены колебания заместителей, в частности, как влияет на них взаимодействие с различными гетероциклами. [c.471]

    Интересный случай перемещения водорода представляет комбинация гидроароматическое соединение — ароматическое гетероциклическое соединение. Установлено, что эфир Ганча превращает хинолин и изохинолин в их тетрагидропроизводные, а акридин и фенантридин в их дигидропроизводные. Аналогично при взаимодействии 1,2-дигидрохинолина с акридином образуется дигидроакридин. Вполне возможно, что реакция может быть использована для оценки сравнительной легкости гидрирования гетероциклических соединений этого типа и что полученные таким образом результаты удастся связать с теоретическими данными. [c.349]

    С моногалоидарилами диалкилфосфористый натрий обычно не реагирует -37. Галоидпроизводные ароматических гетероциклических соединений в некоторых случаях вступают в реакцию Михаэлиса-Беккера. Например, 2-хлорхинолин, 2-хлорлепидин и 6-хлорпиримидин образуют при взаимодействии с дибутилфосфористым натрием эфиры хинолил-2-, лепидил-2- и пиримидил-6-фосфоновых кислот, хотя и с небольшими выходами  [c.48]


    Все ароматические гетероциклические соединения, характеризующиеся избытком я-электронов, содержат, по крайней мере, одно пятичленное- кольцо. Особенностью такого ароматического кольца является то, что гетероатом кольца представляет одну не-поделенную пару электронов для образования сопряженной системы щести я-электронов. Участие этой пары электронов азота в образовании ароматического секстета вызывает понижение рас-творимост , так как в противоположность, например, паре электронов азота пиридина она не может взаимодействовать с молекулами воды. Таким образом, следует ожидать, и это наблюдается в действительности, что растворимость фурана будет ниже, чем тетрагидрофурана, а пиррола — ниже, чем пирролидина или пиридина (табл. VII). [c.197]

    Хотя введение гетероатома в карбоциклическую ароматическую систему не нарушает замкнутости электронной оболочки, оно сказывается, и обычно весьма значительно, на распределении электронной плотности. Характер влияния одного и того же гетероатома различается в зависимости от того, один или два электрона поставляет он в ароматическую систему. В первом случае — (34) — гетероатом оказывает на атомы углерода электроноакцепторное влияние, во втором—(41)—повышает электронную плотность на них. Различия в электронном состоянии гете зоатома сказываются на кислотно-основных свойствах соединений. Например, пиридин, в котором неподеленная пара электронов атома азота не взаимодействует с ароматическим секстетом (она находится на хр -гибридной орбитали в плоскости кольца), обладает ярко выраженными основными свойствами пиррол же, в котором неподеленная пара электронов атома азота (занимающая р-орбиталь) вовлечена в ароматический секстет, имеет очень слабую основность, но проявляет кислые свойства. Количественная оценка вклада гетероатомов в электронную структуру ароматических гетероциклических соединений представляет собой сложную задачу, не решенную еще 5 ончательно квантовой химией, [c.17]

    Вивилеккиа с сотр. [253, с. 177] предложили насадку колонки, разделение на которой основано на взаимодействии атомов серебра с неподеленной парой электронов атома азота в гетероцикле. Фрей с сотр. [Г] применяли насадку на основе серебра для количественного и качественного анализа азотсодержащих ароматических гетероциклических соединений (азааренов), содержащихся в пробах воздуха. Для исследуемых соединений были построены линейные калибровочные графики (254 нм) и определены пределы детектирования (0,2—25 нг) для одной пробы, введенной в колонку длиной I м. Объединенные фильтраты проб воздуха содержали определяемые вещества в количествах 1—10 /о от известных концен- [c.173]

    Кроме бензола, у которого в сопряжении находятся л-электроны кратных связей С—С, к ароматическим системам с п = 1 относятся некоторые гетероциклические соединения, например фуран, пиррол и тиофен, в которых кратные углерод-углеродные связи находятся в сопряжении с неподеленными парами р-электронов таких гетероатомов, как кислород (фуран), азот (пирро.л) и сера (тиофен). В этих соединениях гетероатом связан с двумя атомами углерода, находящимися в состоянии 5р -гибридизации, вследствие чего возникает мезомерное взаимодействие его р-электронов с сопряженными связями С = С. В результате эти пары р-электронов гетероатомов оказываются включенными в характерный для моноциклнческих ароматических систем секстет электронов. [c.310]

    Как следует нз данных, представленных в табл. 5, уменьшение размера цикла приводит к возрастанию селективности, что можно объяснить снижением доли неспецифических дис-пе1рсионяых взаимодействий. Исключение представляют Л -производные азиридина — напряженного гетероциклического соединения, проявляющего ароматический характер. Наличие. в цикле таких электроотрицательных атомов, как О, Н, 8 приводит к возрастанию энергии донорно-акцепторного взаимодействия растворителя с углеводородами донорами п-элек-Т ронов за счет увеличения положительных зарядов на электро-фильных центрах и, соответственно, к увеличению селективности растворителя. При этом, чем выше относительная электроотрицательность вводимого в цикл гетероатома, тем селективнее соединение. [c.35]

    Принцип метода модуляционной спектроскопии отражения основан на том, что отражение света от поверхности металла связано с состоянием его поверхностной электронной плазмы. Последнее в свою очередь зависит от плотности заряда электрода q и от донорно-акцепторного взаимодействия частиц адсорбата с металлом. Таким образом, величина ARIR позволяет характеризовать как наличие на поверхности электрода молекул органического вещества, адсорбция которых изменяет q, так и наличие или отсутствие специфического, донорно-акцепторного взаимодействия адсорбированных молекул с поверхностью металла. Так, например, методом модуляционной спектроскопии отражения можно зафиксировать характерное для адсорбции ароматических и гетероциклических соединений я-электронное взаимодействие их с положительно заряженной поверхностью электрода (частичный переход л-электронов органической молекулы на уровни зоны проводимости металла). [c.34]

    Реакция Скраупа. В 1880 г. 3. Скрауп синтезировал хинолип (СдНуМ) — гетероциклическое соединение, производными которого являются многие алкалоиды. Хиполин получался взаимодействием первичного ароматического амина с глицерином и концентрированной серной кислотой как дегидратирующего агента  [c.249]

    По той же причине наблюдаются различия в величинах удерживания для определенного спирта при применении диоктилсебацината, динонилфта-лата, дибутилфталата и трикрезилфосфата. Неподвижные фазы типа сложных эфиров обладают средней растворяющей способностью по отношению к алканам, простым и сложным эфирам, кетонам, меркаптанам и тиоэфирам. Благодаря их электроне акцепторным свойствам наблюдается также сильное взаимодействие с донорами электронов, например с олефинами, ароматическими углеводородами и гетероциклическими соединениями, но селективность отделения алкенов от алканов незначительна она немного возрастает в последовательности диоктилсебацинат — динонилфталат — дибутилфталат — трикрезилфосфат (см. табл. 1). Вообще можно установить, что селективность не особенно сильно выражена и для других гомологических рядов вследствие одновременного присутствия арильных и алкильных групп (которые обусловливают растворяющую способность по отношению к углеводородам) и карбоксильных или фосфатных групп (которые способствуют растворению кислородных соединений). Исключение составляет лишь разделение галогенопроизводных углеводородов, протекающее, впрочем, в случае сложных эфиров не хуже, чем на многих других неподвижных фазах, например нитрил-силиконовых маслах (Ротцше, 1963). При температурах выше 120° при исследовании спиртов и аминов следует быть осторожным вследствие возможности химических реакций с неподвижной фазой. [c.202]

    Точно так же как и ароматические амины, гетероциклические соединения азота проявляют значительные дисперсионные взаимодействия, которые используются для разделения ксилолов (Дести и Суонтон, 1961). Производное тетразола, как оказалось, пригодно для разделения углеводородов [c.212]

    Свойства гетероциклических соединений определяются характером циклической системы, т.е. размером кольца и природой связей, а также природой гетероатома. При этом роль гетероатома в гетероцикле определяется прежде всего наличием у него неподеленных электронных пар и характером их взаимодействия с электронами цикла. Так, взаимодействие неподеленных электронных пар гетероатома и тс-электронов кольца может щ)Иводитъ к образованию ароматической системы. [c.224]

    Сложные эфиры кислот с помощью ЫЛШ4 восстанавливают до меченых спиртов (КСООК КСОгОН). При термическом декарбоксилировании гетероциклических кислот, содержащих меченую СООО-группу, образуется гетероциклическое соединение с дейтерием при атоме углерода цикла. Аминогруппу в ароматических соединениях можно заменить на дейтерий путем их обработки МаКОз и ВС1, а также КаКОг и 0зР04. Замена на дейтерий групп, содержащих серу, происходит при взаимодействии их с дейтерием в присутствии скелетного никеля. Дейтерий находится у атома углерода, который в исходных соединениях был связан с серой. [c.81]

    При рассмотрении реакций ароматического электрофильного замещения следует разделить гетероциклические соединения на две группы к первой группе относятся те, которые проявляют свойства оснований, ко второй — те, которые не проявляют основных свойств. Для представителей первой группы характерно взаимодействие неподеленной пары электронов атома азота с электрофильными реагентами (разд. 2.1), присутствующими в реакционной смеси (протон в случае нитрующей смеси, хлорид алюминия в случае реакции Фриделя — Краф-тса), которое проходит быстрее, чем какое-либо замещение при атоме углерода, И превращает субстрат в положительно заряженный катион, склонность которого к взаимодействию с электрофильной частицей Х+ существенно понижена. Стоит вспомнить понижение скорости реакции электрофильного замещения при переходе от незамещенного бензола к катиону N,N,N-тpимeтилaнилиния (РЬЫ Мез) в 10 раз, хотя в этом случае фрагмент, несущий положительный заряд, лишь присоединен к ароматической системе, а не является ее частью. Таким образом, все гетероциклические соединения, содержащие атом азота пиридинового типа (т. е. фрагмент С=Н), с трудом вступают в реакции электрофильного замещения, если (а) в молекуле отсутствуют заместители, активирующие кольцо к атаке электрофилами, (б) в молекуле нет конденсированного бензольного кольца, в котором могут проходить реакции электрофильного [c.35]

    Гетарилцинковые производные нашли широкое применение в катализируемых палладием реакциях сочетания, поскольку в случае использования таких металлоорганических соединений многие функциональные группы остаются незатронутыми. Цинкорганические соединения можно получить реакцией обмена между галогенидами цинка и гетариллитиевыми соединениями [ 123], однако такой метод получения органических соединений цинка значительно ограничивает возможность их использования. Другой эффективный подход к синтезу таких соединений связан со взаимодействием галогенопроизводных гетероциклических ароматических соединений либо с активированным цинком (цинк Рике [124]) или коммерчески доступной цинковой пылью [125], причем этот подход применим как к электроноизбыточным, так и электронодефицитным гетероциклическим системам. [c.61]

    При синтезе шестичленных гетероциклических соединений 1,5-дикарбониль-ное соединение, содержащее двойную связь углерод — углерод, при взаимодействии с аммиаком образует ароматическую систему (в том случае, когда используется насыщенное 1,5-дикарбонильное соединение, образуется дигидропроизводное, которое легко окисляется в соответствующее ароматическое соединение)  [c.83]

    Метилирование. Несколько лет назад сообщалось, что реагент метилирует ЫН- и ОН-группы с кислотными свойствами, а также некоторые ароматические углеводороды (1, 344, [22]). Недавно [5] описано Ы-метилирование гетероциклических соединений. Например, при взаимодействии реагента (3 моля) с бензиладенином (1) в ТГф образуется 9-метил-6-бензиладенин (2) с выходом 63%. В качестве побочного продукта получается 6-бензил-9-этиладенин (3) с [c.93]

    Такое строение, в частности, приписывали ранее продукту взаимодействия бензонитрила с хлористым бензоилом в присутствии апротонной кислоты. Однако больший выигрыш энергии наблюдается при стабилизации этих ионов путем циклизации с образованием квазиароматических гетероциклических соединений — пирилиевых солей. При нагревании нитрилов и хлорангидридов ароматических кислот в присутствии хлорного олова или хлористого цинка образуются 2,4,6-триарил-3,5-диазапирилиевые соли 127,148 т. е. те же соединения, которые получают при взаимодействии нитрилов с некоторыми N-ацилиминохлоридами (стр. 269). Пирилие-вые соли получены также реакцией ариловых эфиров циановой кислоты с хлористым бензоилом и апротонными кислотами [c.270]

    Плоские ненасыщенные гетероциклические соединения, содержащие пять атомов, могут быть отнесены к ароматическим системам, если они имеют единый цикл р-орбнталей, содержащий шесть электронов. Карбоциклнческим аналогом подобных гетероциклов может служить анион циклопентадиенила, который представляет собой плоский пятиугольник с пятью р -гибридизованными атомами углерода и циклической системой пяти р-орбиталей, содержащих шесть электронов (рис. 2.6, а). В качестве примера пятичлеиного ароматического гетероцикла приведем пиррол. Молекула пиррола плоская, что свидетельствует о р -гибридизации атома азота. Три (т-связи азота лежат в плоскости кольца, а р-орбиталь, перпендикулярная плоскости, несет свободную пару электронов. Эта р-орби-таль атома азота взаимодействует с четырьмя т-орбиталями атомов углерода с образованием циклической т-электронной системы, состоящей из пяти р-орбиталей, но содержащей в общей сложности шесть электронов (рис. 2.6, б) [c.21]

    Венуто и сотр. [1, 15, 16] изучали алкилирование олефинами замещенных бензолов (например, фенола и анизола), а также гетероциклических соединений (тиофена, пиррола). При алкилировании фенола были получены необычные результаты. Оказалось, что алкилирование фенола этиленом идет в более жестких условиях ( 200° С), чем алкилирование бензола ( 120° С), хотя фенол более чувствителен к нуклеофильной атаке. Кроме того, было установлено, что присутствие фенола подавляет алкилирование бензола. Венуто и Вю [17] считают, что такое обращение реакционной способности бензола и фенола на цеолите ННдУ, активированном в токе кислорода при 550° С, объясняется сильной адсорбцией фенола на катализаторе, которая уменьшает доступность активных центров для слабо-адсорбируемых молекул этилена. Таким образом, адсорбированный этил-катион вступает в реакцию в соответствии с механизмом Ридила, т. е. взаимодействует с молекулой ароматического соединения, находящейся в свободном, а не в адсорбированном состоянии. [c.132]

    Эти соединения получаются в результате взаимодействия амина (например, flNHj) с альдегидом (например, формальдегидом) и непредельным спиртом (например, пропаргиловым). Состав соединения соответствует формуле ffN ( HjO/ ) j, где Д — заместитель, относящийся к одной из групп, например алкил, циклический алкил, арил и т.п., а Д — остаток спирта с тройной связью. Можно использовать для синтеза различные аминьь например, алифатические, циклоалифатические, ароматические, гетероциклические и т.д. [c.67]

    Таким образом, а- и р-полосы являются результатом переходов между одной и той же серией энергетических уровней. Это объясняет одинаковое их смещение при аннелированин в ряду ароматических и гетероциклических соединений (рис. 14). В общем случае с увеличением молекулы электронное взаимодействие становится меньшим, и интервал энергии между соответствующей занятой и вакантной орбитами также снижается, чем и объясняется приблизительное постоянство отношения частот а- и р-полос. [c.354]

    Взаимодействие кетокарбенов с ароматическими и гетероциклическими соединениями [c.158]

    Не только гидроксил-ион, но и многие другие нуклеофильные реагенты типа АНа взаимодействуют с пирилиевыми солями аналогично иону Н0 , давая ароматические или гетероциклические соединения. С аммиаком образуется пиридин (А. Байер, 1910 г.) [c.686]


Смотреть страницы где упоминается термин Взаимодействие с ароматическими и гетероциклическими соединениями: [c.284]    [c.422]    [c.931]    [c.767]    [c.10]    [c.89]    [c.33]    [c.56]    [c.20]   
Смотреть главы в:

Химия карбенов -> Взаимодействие с ароматическими и гетероциклическими соединениями




ПОИСК





Смотрите так же термины и статьи:

Взаимодействия ароматические

Гетероциклические соединени

Гетероциклические соединения

Гетероциклические соединения Гетероциклический ряд



© 2024 chem21.info Реклама на сайте