Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Массообмен в тарельчатой колонне

    Необходимым условием физического М. является равенство в объекте и его модели т. наз. критериев подобия, представляющих собой определенные безразмерные комбинации разл. физ. величин, оказывающих влияние на параметры объекта и модели. На практике обеспечить указанное условие в случае равенства неск. критериев подобия чрезвычайно трудно, если только не делать модель тождественной объекту М. Поэтому используется приближенное физическое М., при к-ром второстепенные процессы, происходящие в объекте, либо не моделируются совсем, либо моделируются приближенно. Напр., массообменная тарельчатая колонна моделируется насадочной лаб. колонкой при этом подобие гидродинамич. обстановки в объекте и модели игнорируется, а моделируется лишь разделит, способность аппарата, определяема термодинамич. закономерностями межфазного равновесия. [c.101]


    Аппараты, применяемые для массообменных процессов, в частности для абсорбции и экстракции, можно разделить на две группы с непрерывным контактом фаз и со ступенчатым контактом фаз. К первым относятся, например, распылительные и насадочные колонны, ко вторым можно отнести тарельчатые колонны, смесительно-отстойные экстракторы. На рис. 111.1 даны схемы аппаратов обоих типов применительно к абсорбции. [c.42]

    Рабочую высоту насадочных ректификационных колонн определяют методами, применяемыми для массообменных аппаратов с непрерывным контактом фаз [уравнения (III.32) и (III.33)1. Число тарелок в тарельчатых колоннах находят либо с помощью средней эффективности тарелки [уравнение (III.43) ], либо с помощью кинетической кривой, строящейся на основе эффективности тарелок по Мэрфри. Для определения средней эффективности колпачковых тарелок широко используют эмпирическую зависимость, график которой построен на рис. III. 14. Здесь на оси абсцисс отложено произведение средней вязкости жидкой фазы в колонне (в мПа-с) на относительную летучесть  [c.63]

    Массообменные процессы. Эта группа процессов отличается значительной сложностью по сравнению с предыдущими и соответственно большим числом моделей для их расчета. Массообменный процесс в большинстве случаев (ректификация, экстракция, абсорбция, кристаллизация) является системой, включающей как необходимые другие аппараты (например, теплообменники, конденсаторы, декантаторы и т. п.). Поэтому и математические модели как для описания, так и для алгоритмизации являются более сложными. Рассмотренные ранее модели структуры потоков и теплообмена могут использоваться при описании массообменных процессов на ступени разделения (тарельчатые колонны) и в слое насадки (насадочные колонны). При описании массообменного процесса уравнения гидродинамической структуры потоков фаз (см. табл. 4.4) должны быть дополнены членом, учитывающим массоперенос компонента через поверхность раздела фаз, например, в матричном выражении  [c.129]

    Следует подчеркнуть, что все вышеизложенные рассуждения относились к тарельчатым колоннам. В колоннах этого типа массообмен происходит при барботировании потока паров через слой жидкости на тарелке, при этом между паром и жидкостью достигается более или менее полное термодинамическое равновесие. [c.99]


    Тарельчатые колонны имеют то преимущество, что их нагрузку можно снижать до очень низких значений, при этом их разделяющая способность даже увеличивается. Насадочные же колонны имеют определенную минимальную нагрузку, при которой еще обеспечивается противоточный массообмен. В промышленности во многих случаях колонны регулируют по перепаду давления во избежание захлебывания и для поддержания оптимальной нагрузки. Этот способ успешно применяют также для регулирования лабораторных установок (см. разд. 8.4.2). [c.164]

    Тарельчатые колонны. В тарельчатой колонне процесс ректификации осуществляется путем многократного ступенчатого контактирования паровой и жидкой фаз. Основной массообмен происходит на тарелках и только незначительный — в свободном объеме колонны. [c.133]

    Эффективность насадочных и тарельчатых колонн во многих случаях может быть повышена за счет применения пульсирующих потоков. Существует два способа введения низкочастотных колебаний в массообменные аппараты первый основан на создании возвратно-поступа-тельного движения контактирующих фаз, такие аппараты называются пульсационными] второй предусматривает низкочастотные колебания контактных устройств внутри аппаратов, которые называются вибрационными. [c.323]

    Высота аппаратов со ступенчатым контактом. Высоту аппаратов этого типа, в частности тарельчатых колонн, иногда выражают через объемный коэффициент массопередачи, согласно уравнению (Х,77) или (Х,77а). В барботажных аппаратах величина Ку должна рассчитываться на единицу объема слоя пены или эмульсии, в котором происходит в основном массообмен. Однако ввиду трудности определения объема подвижной пены коэффициенты массопередачи относят к единице рабочей площади тарелки. Эти коэффициенты массопередачи, обозначаемые через Кз, связаны с коэффициентами массопередачи Ку и Ку (например, прн расчете по фазе Ф ) соотношением [c.424]

    Точные расчеты процесса абсорбции предлагается вести по рассмотренному ниже алгоритму расчета обобщенной колонны, или обобщенного массообменного тарельчатого аппарата. [c.310]

    ТАРЕЛЬЧАТЫЕ АППАРАТЫ, массообменные вертикальные колонные аппараты, снабженные расположенными одна над другой поперечными перегородками, или тарелками, с помощью к-рых по высоте колонны осуществляется многократный дискретный контакт газа (пара) с жидкостью. Организованное движение фаз на тарелках м. б. прямо-, противо- или перекрестноточным, а также смешанным при общем противотоке фаз по колонне (газ либо пар поднимается вверх, жидкость стекает вниз). В зависимости от назначения массообменного процесса (см., напр.. Абсорбция, Газов осушка, Массообмен, Ректификация, Экстракция жидкостная) в колонном аппарате устанавливают 1-100 тарелок и более. [c.497]

    Таким образом, установлено, что замена клапанных тарелок на новую насадку позволит интенсифицировать массообменные процессы в колоннах, снизить флегмовые числа с 1,5 (по проекту) до 1,1 в дебутанизаторе и с 14,43 (по проекту) до 11,5 в изопентановой колонне с получением изопентановой фракции марки А по ТУ 38.101494 - 79. Кроме этого возможно повышение производительности блока извлечения изопентана на 50 % по сравнению с тарельчатыми колоннами. [c.225]

    Рассчитайте диаметр массообменных колонн, выберите скорости сплошной фазы в насадочных и тарельчатых колоннах. [c.42]

    Тарелки представляют собой такой тип контактного устройства, на котором контакт (и соответственно тепло- и массообмен) пара и жидкости осуществляется в барботажном струйном или вихревом режиме. Эти режимы контакта определяются конструктивным устройством тарелки. В отличие от насадок, где контакт пара и пленки жидкости непрерывен вдоль всей высоты слоя насадки (противотоком), в тарельчатой колонне этот контакт дискретно осуществляется на каждой тарелке, после чего [c.500]

    Для процессов физической абсорбции используют, как правило, противоточные аппараты с непрерывным или ступенчатым контактом, в которых состояние, близкое к равновесию, достигается только на одном из концов аппарата, а в рабочей зоне протекают интенсивные процессы массообмена с максимально возможной движущей силой. Такие аппараты называются массообменными. В подразделе 1.4.1 применительно к процессу десорбции были рассмотрены два типа таких массообменных аппаратов насадочные и тарельчатые колонные аппараты. Эти аппараты также эффективны при проведении процесса разделения газов при достаточно большой высоте они обеспечивают практически любое технологически обоснованное число теоретических ступеней разделения. [c.41]

    Как уже отмечалось, в производствах основного органического и нефтехимического синтеза используются непрерывные совмещенные реакционно-массообменные процессы. Например, при производстве этилового спирта сернокислотной гидратацией этилена применяется реакционно-абсорбционный процесс. На гидратацию поступает этилен—этановая фракция, которая барботирует через 98 %-ную серную кислоту В тарельчатой колонне при противотоке реагентов протекают с вьщелением тепла две основные реакции  [c.217]


    Насадочные ректификационные колонны имеют меньшее по сравнению с тарельчатыми колоннами гидравлическое сопротивление, приходящееся на одну теоретическую тарелку. По этому показателю они вполне пригодны для разделения смесей под вакуумом. Наиболее распространенный тип насадочных массообменных колонн — аппараты с насыпной насадкой. Важнейшей частью колонн этого типа является насадка, служащая для развития поверхности контакта фаз, которая образуется жидкостью, смачивающей насадку. Важнейшими характеристиками насадки являются удельная поверхность а, т. е. поверхность единицы объема насадки, и свободный объем Уев- Увеличение удельной поверхности насадки благоприятствует повышению ее разделяющего действия. Однако это чаще всего связано с уменьшением свободного объема, что приводит к повышению гидравлического сопротивления. Поскольку при разделении смесей под вакуумом важно обеспечить достаточное разделяющее действие при минимальном гидравлическом сопротивлении, при выборе насадки создается ситуация, требующая принятия компромиссного решения. Наиболее распространенные и традиционно применяемые насадки для аппаратов, работающих при атмосферном или близком к нему давлении, в большинстве своем "оказались малопригодными для вакуумных аппаратов. Это потребовало разработки конструкции, исследования и организации производства новых типов насадок, обеспечивающих эффективную работу вакуумных аппаратов. [c.38]

    Насадка предназначена для создания большой поверхности контакта между стекающей по ней жидкостью и поднимающимся потоком паров и интенсивного перемешивания, их. Контакт и массообмен между фазами в насадочной колонне происходят непрерывно на всем участке аппарата, заполненном насадкой. Этим и отличается работа насадочной и тарельчатой колонн. [c.112]

    Принципиальное устройство тарельчатой колонны обусловлено тем, что в ней процесс ректификации осуществляется путем многократного ступенчатого контактирования паровой и жидкой фаз. Для этой цели она оборудована специальными устройствами— тарелками, на которых в основном и происходит массообмен, если не считать незначительного массообмена в свободном объеме колонны. [c.116]

    Ректификация является наиболее совершенным видом перегонки. В качестве нижнего УОП используется испаритель (куб колонны), а верхним УОП является конденсатор (дефлегматор). Пар из испарителя поднимается по колонне, контактируя со стекающей по колонне жидкостью (флегмовый поток), которая образуется в верхнем УОП из поступающего в него пара. Для улучшения условий массообмена между жидкостью и паром в колонне размещают контактные (массообменные) устройства. В качестве этих устройств, увеличивающих поверхность массообмена и влияющих на величину коэффициента массопередачи, используют различные типы насадок (кольца, спирали, рулоны из сетки и т.д.) и тарелок (ситчатые тарелки, колпачковые, инжекционные). В зависимости от типа массообменного устройства колонны называются насадочными или тарельчатыми. [c.271]

    Процесс ректификации в тарельчатых колоннах осуществляется путем многократного ступенчатого контактирования паровой фазы с жидкостью. В простейшем случае ректификационная колонна представляет собой цилиндрический аппарат с двумя днищами (верхним и нижним), внутри которого перпендикулярно его оси расположены тарелки. На этих тарелках в основном и происходит массообмен. [c.13]

    Характер контакта фаз — это существенный признак, по которому массообменные аппараты делятся на две большие группы. При непрерывном контакте потоки взаимодействуют непрерывно, без резких изменений характера течения по высоте. Типичный пример таких аппаратов — насадочные колонны. Аппараты со ступенчатым контактом разделены по высоте на ряд последовательных ячеек (ступеней). На каждой ступени фазы вступают в контакт, после чего они разделяются и передаются на соседние ступени (в подавляющем большинстве — противотоком). Типичными примерами таких аппаратов служат тарельчатые колонны, смесительно-отстойные экстракторы. [c.215]

    Расчету подлежат высота Н и диаметр Dan аппарата. Существуют два основных принципиально различных типа массообменных аппаратов 1) аппараты с непрерывным контактом фаз — насадочные колонны, пленочные аппараты 2) аппараты со ступенчатым контактом фаз — тарельчатые колонны, смеси-тельно-отстойные аппараты. [c.320]

    Практические данные эксплуатации массообменной аппаратуры дают возможность сделать следующий вывод эффективность тарельчатых колонн увеличивается с уменьшением расстояния между [c.141]

    Новочеркасский электродный завод выпускает колонны из пропитанного графита для охлаж ения промышленных газов, абсорбции, десорбции, ректификации и других тепло- и массообменных процессов. Колонны собираются из царг на прокладках при помощи промежуточных фланцев и стяжных шпилек. Уплотнения выполняются из химически стойких и термостойких резиновых и пластмассовых материалов. Для неразъемных соединений применяют замазку типа арзамит. Колонны разделяются на отсеки решетками с насадкой из колец Рашига или тарельчато-колпачковыми устройствами. Колпачки и насадку выполняют из графитопласта АТМ-1. [c.83]

    Пример 2. Каталог оборудования по массообменным тарельчатым колоннам должен содержать информацию о конструктивных и технологических параметрах (рис. 5.4). Опишем эту информацию в виде структуры DE LARE 1 OLUMN, [c.257]

    Наконец, уравнения межфазного равновесия парогазожидко,стных систем существенно нелинейны (см. гл. II стр. 44), их линеаризация возможна лишь при очень малых концентрациях распределяемых компонентов в жидкости. Математические модели десорбциоЯ-ных колонн должны учитывать, таким образом, все гидродинамические и кинетические характеристики процесса, обычно применяемые при моделировании массообменных тарельчатых колонн упрощающие допущения для десорберов аммиачно-содового производства неприемлемы. [c.173]

    Рассмотрим часть диаграммы для графического определения числа теоретических ступеней разделения по. методу Мак-Кзба и Тиле (рис. 79). В тарельчатой колонне между жидкостью состава 1/ , находящейся на тарелке, и поднимающимися парами устанавливается термодинамическое равновесие . Концентрация паров, покидающих тарелку, равна Такую же концентрацию (г/а) имеет жидкость, находящаяся на вышележащей тарелке . В паровом пространстве между тарелками (а следовательно, между точками у и у2) массообмен практически не происходит. [c.123]

    Преимущества насадочных контактных устройств перед тарельчатыми общеизвестны и заключаются прежде всего в исключительно малом перепаде давления на одну ступень разделения. Среди них более предпочтительны регулярные насадки, поскольку они имеют регулярную заданную структуру и их гидравлические и массообменные характеристики более стабильны по сравнению с насыпными. Гидродинамические условия эксплуатации насадок при перекрестном контакте фаз существенно отличаются от таковых при противот е. При перекрестном токе жидкость движется сверху вниз, а пары -горизонтально, следовательно, жидкая и паровая фазы проходят различные независимые сечения, площади которых можно регулировать, а при противотоке - одно и то же сечение. Поэтому перекрестноточный контакт фаз позволяет регулировать в оптимальных пределах плотность жидкостного и парового орощений изменением толщины и поперечного сечения насадочного слоя и тем самым обеспечить почти на порядок превыщающую при противотоке скорость паров (в расчете на горизонтальное сечение колонны) без повышения гидравлического сопротивления и значительно широкий диапазон устойчивой работы колонны при сохранении в целом по аппарату принципа и достоинств противотока фаз, а также устранить такие дефекты, как захлебывание, образование байпасных потоков, брызгоунос и другие, характерные для противоточных насыпных насадочных или тарельчатых колонн. Экспериментально установлено, что перекрестноточный насадочный блок конструкции УНИ, выполненный из металлического сетчато-вяза-ного рукава, высотой 0,5 м эквивалентен одной теоретической тарелке и имеет гидравлическое сопротивление в пределах всего 1 мм рт.ст. (0,13 103 Па), т.е. в 3 - 5 раз ниже по сравнению с клапанными тарелками. Это достоинство особенно ценно тем, что позволяет обеспечить в зоне питания вакуумной колонны при ее оборудовании насадочным слоем, эквивалентным 10 - 15 тарелкам, остаточное давление менее 20 - 30 мм рт.ст. и, как следствие, значительно углубить отбор вакуумного газойля или отказаться от подачи водяного пара в низ колонны. [c.51]

    Наиболее близко этой модели отвечает поток в реальном каскаде аппаратов с мешалками (рис. П-38, а). Применение ячеечной модели дает хорошие результаты также для массообменных аппаратов ступенчатого типа, например для тарельчатых колонн, описанных в главах XI и XIII, и для других аппаратов, секционированных по ходу потока. [c.124]

    Процесс проводят в тарельчатых колонных аппаратах или в роторных экстракторах (с вращающимся на общем валу пакетом дисков), где благодаря интенсивному мех радиальному перемешиванию улучшается массообмен между потоками сырья и р-рителя Сырье движется в ниж часть аппарата и контактирует с восходящим потоком сжиженного пропана, осн часть углеводородных компонентов (деас-фальтизат) растворяется в нем и выводится из верх части аппарата Осаждающиеся смолисто-асфальтеновые в-ва образуют т наз концентрат, к-рый непрерывно отводят из ниж отстойной зоны аппарата С целью более полного извлечения ценных высоковязких углеводородных фракций концентрат в спец колонне дополнительно обрабатывают пропаном При произ-ве компонентов смазочных масел процесс осуществляют при 75 90 °С, 3,7 4 4 МПа и объемном соотношении пропан сырье (5-12) 1 [c.7]

    Из множества конструкций экстракционных аппаратов [1, 3, 4] наибольшее распро-странение получили противоточные колонны с механическим перемешиванием вибра-. ( ционные, роторно-дисковые, пульсационные и др, В тех случаях, когда требуется аппарат, эквивалентный большому числу теоретических ступеней, используют смесительно-1" отстойные экстракторы. Аппараты этого типа позволяют строго контролировать или I целенаправленно изменять состав экстрагента на отдельных ступенях. Для экстрак-ционных процессов, в которых взаимодействуют плохо отстаивающиеся или склонные I к эмульгированию фазы, применяют тарельчатые колонны. Если требуется малое время I контакта в процессе экстракции, рекомендуется использовать центробежные аппараты. Наиболее простые и высокопроизводительные из всех известных видов экстракцион- I ных аппаратов — распылительные колонны — могут применяться в тех случаях, когда 1- требуется аппарат, эффективность которого не больше одной теоретической ступени. I Общие принципы расчета массообменной (в том числе и экстракционной) аппа- [c.255]

    Конструкция тарельчатой колонны может быть значительно упрощена, если допустить свободную посадку тарелок в царгу. В литературе отсутствуют данные о влиннии конструктивного периферийного зазора между барботажными тарелками и корпуоом колонны на ее массообменные и гидравлические характеристики. [c.9]

    В работах /21,227 дается обзор большого числа конструкций лабораторных колонн, приведены некоторые типы насадочных, тарельчатых колонн и колонн с орошаемыми стенками. Из предло-ленных цельностеклянных лолонн с перфорированными тарелками наиболее удачной мокно считать конструкцию, предложенную Ольдер-шоу /23у, Колонны этой конструкции сочетают высокие массообмен-ные показатели с относительной простотой изготовления. [c.14]

    Такими эффективными массообменными аппаратами являются насадочные и тарельчатые колонные аппараты. В насадочнык аппаратах развитая поверхность контакта фаз создается за счет использования различных насадочных тел, образующих при соответствующей укладке в аппарате систему извилистых каналов, которые имеют достаточно большую поверхность — примерно 80-700 м на 1 м объема рабочей зоны аппарата. Жидкость движется по поверхности каналов преимущественно в виде тонких 1шенок (0,1-5 мм), а газ занимает все оставшееся свободное пространство, объем которого также достаточно велик и составляет 70-96 % объема рабочей зоны аппарата. При перетекании жидкости с одного элемента насадки на другой пленка жидкости разрушается, а жидкость при этом перемешивается. На нижележащем элементе насадки образуется новая пленка. Структура потоков газа и жидкости в аппарате достаточно близка к поршневому противоточному движению. [c.27]

    Проведение расчета тарельчатой колонны с учетом кинетики массообмена на тарелке связано с дополнительной трудностью— необходимостью правильно отразить характер движущих сил в реальном аппарате. Ввиду неопраниченного многообразия в конструктивном оформлении массообменной тарелки и значительного числа факторов, влияющих на гидродинамический режим массообмена (в том числе и физико-химических свойств смеси), подход к расчету тарельчатого аппарата по кинетическим уравнениям пока не имеет больших перспектив, хотя и является принципиально правильным направлением. [c.11]

    Осн. параметры прн расчете М. а.— диаметр аппарата и его высота (иля длина зоны контакта, необходимая для завершения процесса). Диаметр зависит от скорости сплошной фазы V, рассчитываемой на полное сечение аппарата. Для оценки предельно допустимой скорости в аппарате часто нспольз. Гв-фактор, причем Ра — Ро. где Ро — плотн. газовой (паровой) фазы. Высота насадочной части колонны определяется числом теор. ступеней разделения н высотой насадки, эквивалентной одной теор. ступени разделения, высота тарельчатой колонны — числом реальных тарелок и расстояввем между тарелками, к-рое зависит от брызгоуноса н конструктивных требовании. Эффективность работы М. а. оценивается в осн. энергетич. затратами на массообмен в капиталовложениями. [c.314]

    Для проведения жидкостной экстракции применимы любые принципиальные схемы, возможные при осуществлении других массообменных процессов. В промышленных экстракционных процессах наиболее часто используют многоступенчатый противоточный контакт фаз в батарее смесителей и отстойников или тарельчатой колонне, а также непрерывный дифференциальный контакт в непрерывнодействующей насадочной. или [c.429]

    Следует иметь также в виду, что диффузионное сопротивление зависит и от природы отделяемого компонента (примеси), поскольку значения пленочных коэффициентов и входящих в выражения ВЕПх и ВЕПу, определяются значениями коэффициента диффузии этого компонента в соответствующей фазе [316—318]. Этим, очевидно, можно объяснить результаты опытов по очистке селена ректификацией в тарельчатых колоннах, полученные в работе [319] показано, что при очистке селена от теллура основное сопротивление массообмену оказывает паровая фаза, а при очистке от серы диффузионное сопротивление обеих фаз примерно одинаково. Но, с другой стороны, диффузия и в жидкой, и в паровой фазах колонны в действительности часто не является молекулярной, вследствие чего величины ВЕПк и ВЕП, трудно оценить расчетным путем [320—324]. Поэтому в целом для определения лимитирующей стадии процесса массообмена в ректификационной колонне приходится прибегать к эксперименту. [c.102]


Смотреть страницы где упоминается термин Массообмен в тарельчатой колонне: [c.107]    [c.275]    [c.261]    [c.400]    [c.40]    [c.128]    [c.219]   
Гидродинамика, массо- и теплообмен в дисперсных системах (1977) -- [ c.198 ]




ПОИСК





Смотрите так же термины и статьи:

Колонна массообмен

Массообмен

Тихомиров, Н. П. Галкин, В. Д. Федоров. Исследование массообмена в экстракционной тарельчатой колонне с воздушным перемешиванием



© 2024 chem21.info Реклама на сайте