Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Производство основных органических соединений

    В основе методов переработки нефти и газа и применения товарных нефтепродуктов в различных областях народного хозяйства лежат физико-химические процессы. Управление этими процессами требует глубокого знания физических и физико-химических свойств газа, нефти, нефтяных фракций, составляющих их углеводородов и других органических соединений нефтяного сырья. Одни из констант, характеризующих эти свойства, входят в формулы для расчетов нефтезаводской аппаратуры, другие используются для контроля производства, третьи прямо или косвенно отражают эксплуатационные свойства нефтепродуктов, являясь, таким образом, условными показателями их качества. Ниже рассмотрены основные показатели физико-химических свойств нефти и нефтепродуктов. [c.34]


    Производство основных органических соединения [c.256]

    Озонирование сточных вод. Метод озонирования позволяет уничтожать в сточных водах цианистые соединения, фенолы, поверхностно-активные вещества, в том числе и алкилбензолсульфонаты, роданиды, нефтепродукты и сопутствующие им меркаптаны, сероводород и различные продукты основного органического синтеза. Сточные воды, прошедшие очистку при помощи озона, прозрачны, бесцветны, не имеют запаха и привкуса. Сбрасываемые воды ряда нефтехимических производств невозможно обезвредить обычными методами химической и биохимической очистки, и только озон позволяет разрушить сложные, не поддающиеся биологическому распаду вещества. [c.343]

    Ядерный магнитный резонанс. Все рассмотренные нами до сих пор методы атомного и молекулярного спектрального анализа относились к оптическим областям спектра. Но оказалось, что и в радиоволновой области в определенных условиях можно получать ценные сведения о структуре химических, особенно органических, соединений. Метод ядерного магнитного резонанса, первые практические применения которого имеют всего 10 — 15-летнюю давность, стал в настоящее время одним из основных методов установления структуры органических соединений. Одновременно быстро увеличивается круг его применения для целей качественного и количественного анализа, особенно в случае сложных задач, когда применение других методов мало эффективно. Уже в настоящее время в ряде производств сложных органических соединений в химико-фармацевтической промышленности и производстве красителей для цветных фотоматериалов ход производства и качество готовой продукции контролируется методом ядерного магнитного резонанса. Несомненно, что и в ближайшем будущем применение этого метода в аналитических целях будет стремительно расти. [c.342]

    За последнее время все большее значение приобретает окисление органических соединений кислородом воздуха в присутствии катализаторов. На нем основаны многие крупные производства основного органического синтеза. Катализаторами процесса являются окислы металлов и их соли, и наиболее активны в этом отношении соли жирных и нафтеновых кислот с металлами с переменной валентностью (РЬ, Мп, Си). Иногда окисление проводят в газовой фазе при атмосферном или повышенном давлении. [c.126]


    При изучении производств основного органического и нефтехимического синтеза, как связанных систем, можно установить, что в них регулярно повторяются простые элементы системы и определенные технологические связи (коммуникации, соединения, включения) этих элементов. Причем от связи элементов между собой зависят капитальные и энергетические затраты на получение целевых продуктов. Кроме того, исследование тех- [c.21]

    Производство основных органических соединении [c.256]

    Производство основных органических соединений [c.256]

    Процессы дегидрирования играют большую роль в нефтехимической промьш1леш1ости, поскольку таким образом получают основную массу мономеров ддя производства синтетического каучука и пластмасс (дивинил, изопрен, стирол, альфаметилстирол и т.д.), некоторые альдегиды и кетоны (формальдегид, ацетон, метилэтилкетон). В целом реакция дегидрирования очень часто является звеном в многостадийных синтезах самых различных органических соединений - мономеров, поверхностно-активных веществ, растворителей и т.д. [c.29]

    Основная область использования боратов в США — производство стекла, мыла, эмалей. На производство микроудобрений и сельскохозяйственных ядохимикатов расходуется за последние годы 81% борного сырья. Значительное количество его идет также на производство различных органических соединений бора, используемых в качестве дегидратирующих агентов, промежуточных продуктов реакций органического синтеза, пластификаторов и т. д. Структура потребления боратов приведена ниже (%) [36, 37]  [c.271]

    Пластмассы. Пластические массы — высокомолекулярные соединения органических веществ. В настоящее время известно множество различных видов пластмасс, физические и механические свойства которых могут удовлетворять самым различным требованиям производства. Изменение этих свойств достигается добавлением к основному органическому соединению наполнителей, пластификаторов, красителей и других добавок. [c.18]

    Производства основного органического синтеза и мономеров для синтетических каучуков всегда имеют дело со сложными, часто трудноразделяемыми смесями, из которых необходимо выделять индивидуальные вещества высокой степени чистоты. Поэтому технологи вынуждены использовать все средства разделения, которыми располагает химическая техник . Применяются практически во всех производствах процессы дробной конденсации, абсорбции, ректификации, очень часто экстракции, адсорбции. Во многих случаях эти типовые массообменные процессы не обеспечивают высоких требований к чистоте продуктов, иногда же они либо бессильны, либо технически и экономически нецелесообразны. Тогда прибегают к более сложным способам, таким, как азеотропная и экстрактивная ректификация, массообменные процессы (абсорбция, экстракция, ректификация) в сочетании с химической реакцией, наконец, новые методы, пока еще мало развитые диффузия через непористые мембраны, обратный осмос, применение соединений включения. [c.333]

    В этой книге собраны данные о термодинамических свойствах кислородсодержащих органических соединений, имеющих в своем составе только три элемента — углерод, водород и кислород. К таким соединениям относятся спирты, альдегиды кетоны, кислоты, простые и сложные эфиры, фенолы и многие другие вещества значение которых в народном хозяйстве велико и в последнее время все возрастает Сведения о термодинамических свойствах этих веществ распылены по многочисленным порой труднодоступным источникам, чаще всего не систематизированы и не сопро вождаются оценками достоверности и точности. Поэтому отыскать нужную инфор мацию бывает трудно даже специалистам, не говоря уже о широком круге инженерно технических и научных работников в имеющейся отечественной и зарубежной спра вочной литературе термодинамические данные для органических соединений или оТ сутствуют совсем, или приведены лишь для простейших веществ. Это тормозит создание и усовершенствование производств основного органического и нефтехимического Синтеза, промышленности синтетического каучука и промышленности полимерных материалов, проц ссов тонкого органического синтеза, а за последнее время и биосинтеза, а также- развитие науки в этих областях. [c.3]

    В этой книге рассмотрены отходы и побочные продукты многотоннажных производств основного органического и нефтехимического синтеза, а также побочные продукты, образующиеся при получении высокомолекулярных соединений. К ним прежде всего относятся побочные продукты синтезов диеновых и винилароматических мономеров, а также синтетических полимеров. Приведены данные по применению побочных продуктов производства одно- и многоатомных спиртов, жирных кислот, фталевого ангидрида и замещенных фенолов. В книге обобщены имеющиеся литературные данные по строению, составу и свойствам отходов и побочных продуктов различных производств, указаны возможные направления их использования в качестве исходных продуктов для получения новых веществ и материалов. Кроме того, книга может быть использована в качестве справочного пособия. [c.6]


    Процессы амидирования имеют важное значение в промышленности основного органического и нефтехимического синтеза для производства ряда ценных соединений. Из эфиров муравьиной кислоты, синтезируемых из оксида углерода и спиртов в присутствии основных катализаторов, получают диметилформамид  [c.222]

    Сточные воды нефтехимических производств после локальной очистки от основной массы летучих органических соединений подвергают нейтрализации, а затем смешивают с нефтесодержащими стоками. При этом химически загрязненные сбросы нефтехимических производств иногда перед смешением со стоками НПЗ подвергают биохимической очистке. [c.227]

    Трудно бывает решить, является ли то или другое химическое вещ,ество нефтехимическим продуктом, поскольку, как уже отмечалось выше, любое органическое соединение можно синтезировать, исходя из метана. Кроме того, возможность получения бензола, толуола, нафталина и других соединений из нефти означает, что все синтетические вещества ароматического ряда, в том числе красители, лекарственные и взрывчатые вещества и т. п., можно рассматривать как продукты нефтяного происхождения. К выбору объектов для описания приходилось подходить очень продуманно, чтобы не увеличить чрезмерно объем книги. Из трех основных типов органических соединений — алифатических, ароматических и гетероциклических — в химии производных нефти рассматриваются главным образом алифатические соединения. Производство ароматических углеводородов из нефти обсуждается в книге еще довольно подробно, но вопросы дальнейшей их химической переработки ограничиваются только последними достижениями в этой области. Аналогичным образом описывается производство полупродуктов для получения высокополимеров из сырья нефтяного происхождения, но процессы полимеризации опускаются. Вопросы химии и технологии нефтеперерабатывающей промышленности, которая занимается главным образом производством топлив и смазочных масел из сырой нефти, освещены лишь в той степени, в какой они имеют отношение к химической переработке нефти. В книге не упоминается о производстве сажи, базирующемся почти исключительно на нефтяном сырье, но не приводящем к получению синтетических органических продуктов. [c.12]

    В 1994 г. в поверхностные водоемы было сброшено 7935,5 т органических соединений, 44,5% этого количества пришлось на акционерные общества Тулауголь , Воркутауголь , Киселевскуголь . По сравнению с 1993 г. сброс органических соединений по угольной промышленности Российской Федерации в целом уменьшился на 10,4%, в основном, из-за снижения производства и соответствующего значительного сокращения объема сбрасываемых стоков на предприятиях акционерных обществ Кузнецкуголь — на 40%, Южный Кузбасс — на 32,4%, Приморскуголь — на 42,7%, а также в связи с передачей в муниципальную собственность предприятий жилищно-коммунального хозяйства (АО Ленинскуголь — на 84%). [c.58]

    УГЛИ КАМЕННЫЕ — твердое горючее ископаемое черного или черно-серого цвета, относящееся к горным породам растительного происхождения. У. к. (вместе с антрацитами) занимают основное место среди горных ископаемых. Кроме органической (горючей) части, в состав У. к. входят влага и минеральные вещества, образующие золу. Органическая часть состоит в основном из углерода, водорода, кислорода и небольшого количества азота. Особое значение для У. к. имеет сера, входящая в состав органической и минеральной частей. У. к. широко используются как топливо и как важнейшее химическое сырье, перерабатываемое различными методами химической технологии. Кроме коксования, являющегося основным методом переработки У. к., их перерабатывают также путем газификации для получения топливных технологических газов и газов для синтеза многих органических соединений, а также путем полукоксования, для получения полукокса и первичной смолы. У. к. является источником для производства более 300 различных органических веществ, являющихся частично готовой продукцией, а в большинстве случаев сырьем для дальнейшей химической переработки. [c.257]

    Иониты. Начиная с 50-х годов прошлого века ведется изучение ионного обмена. Первоначально основное внимание уделялось исследованиям обмена ионов на минеральных кристаллах, и в почвах. В результате были получены специальные типы алюмосиликатов, предназначенные для умягчения воды с помощью ионного обмена. В 1935 г. Б. Адамс и Е. Холмс получили ионообменные материалы на основе искусственных полимерных соединений. В настоящее время ионообменные смолы (так называют ионообменные полимерные органические соединения) широко применяются в промышленности и научных исследованиях (опреснение воды, очистка реактивов, производство лекарственных веществ и др.). [c.218]

    Что же придет на смену нефти и газу, когда они исчезнут Все чаще в специальной литературе на этот вопрос дается один ответ уголь Итак, вновь приобретает актуальность карбохимия, т. е. химия угля. Методы карбохимии далеко не новы. Еще перед второй мировой войной производство основных органических соединений в Германии базировалось на процессах полукоксова- [c.42]

    Развитие химической промышленности послевоенного периода характеризуется непрерывным увеличением объемов производства за счет ввода новых мощностей, а также расширения ассортимента продуктов основной химической промышленности. Наиболее быстрыми темпами развиваются производства продуктов органического синтеза — растворителей, пластификаторов, антидетонаторов, антисептиков, моющих средств, консервирующих препаратов, ядохимикатов, флотирующих реагентов и др. Расширилось производство анилипокрасочных, химико-фармацевтических, лакокрасочных и других продуктов. Возникла и развилась промышленность некоторых видов синтетических волокон, синтетических смол, кремнийорганических соединений, пластических масс, пленочных материалов, разных видов синтетического каучука. [c.10]

    Одним из главных источников основных органических соединений, необходимых для производства новых синтетических продуктов, является нефть. Эта жидкость известна с античных времен, но чтобы использовать ее в больших количествах, необходимо было открыть способ выкачивания нефти из обширных подземных месторождений. Американский изобретатель Эдвин Лаурентин Дрейк (1819—1880) первым в 1859 г. начал бурить нефтяные скважины. Столетие спустя нефть стала основным источником органических соединений, источником тепла и энергии. [c.136]

    Основной органический синтез, дающий полупродукты (и продукты органической технологии) базируется в основном на каталитических реакциях [28—36]. Большое значение в жизни современного общества имеют такие продукты химической промышленности как серная кислота, аммиак и азотная кислота. Почти все отрасли народного хозяйства потребляют эти вещестйа или же другие химические соединения, полученные с их помощью. На их основе производят десятки миллионов тонн минеральных удобрений, без которых невозможно повышение или даже сохранение урожайности полей. Сотни производств химической, нефтехимической, пищевой, легкой и других отраслей промышленности используют серную, азотную кислоты, аммиак и их производные. Применяют указанные соединения также в металлургической и металлообрабатывающей промышленности. [c.10]

    Под основным органическим синтезом понимают производство синтетических органических соединений, которые имеют в настоящее время важнейпгее значение для химической промыш ленности. [c.255]

    В производствах основного органического и нефтехимического синтеза в реакционных узлах получаются, как правило, многокомпонентные смеси, состоящие из соединений различных классов, которые обладают различными свойствами (температуры кипения, упругости паров, взаимная растворимость и др.). Многие вещества (мономеры, полупродукты) являются химически активными и термически нестойкими. Как известно, соединения, принадлежащие к разным гомологическим рядам, склонны к образованию азеотропов различного типа, содержащих различное число компонентов (гомогенные азеотропы, гетероазеотропы, седловрш-ные азеотропы, тангенциальные азеотропы и др.). [c.146]

    Производство синтетических органических соединений, применяемых в крупных масштабах в качестве полупродуктов для дальнейшей переработки, а также в качестве растворителей, ядохимикатов, хладо-и теплоагентов и т. д., в течение последних 10—15 лет стали относить к отрасли химической промышленности, условно называемой промышленностью основного органического синтез а. Термин основной указывает на важное значение этой отрасли промышленности. В производстве неорганических веществ к основной химической промышленности относят промышленность, вырабатывающую в больших количествах кислоты, щелочи, соли и другие важнейшие сродукты. [c.298]

    Благодаря свойствам извлекать из сложных органических смесей в определенной последовательности органические соединения различных классов адсорбенты нашли широкое применение в промышленности. В нефтеперерабатываюш ей промышленности они до последнего времени применялись главным образом для доочистки масел после их предварительной сернокислотной или селективной очпстки. Улучшение качества смазочных масел достигается за счет все возрастающ,его применения таких адсорбентов, как отбелпва-юш,ие глины (гумбрин, ханларский бентонит), крошки синтетического шарикового алюмосиликатного катализатора (отходы основного производства) и широкопористых силикагелей. Алюмосиликатные адсорбенты-катализаторы АД и СД могут быть использованы в процессах адсорбционной очистки масел и топлив, при определении группового углеводородного состава остаточных топлив (вместо силикагеля АСК) и прн каталитическом крекинге легких керосино-газойлевых фракций п тяжелых вакуумных дистиллятов. [c.128]

    Таким образом, - в высококипящих фракциях нефти, идущих на производство масел, скапливается основное количество серо-органических соединений — обычно 60—707о от содержащихся в исходной нефти. В тех случаях, когда перегонка нефти сопровождается разложением, часть этих соединений, термически менее устойчивых, может теряться в виде сероводорода или переходить из высококипящих фракций в низкокипящие. Однако основная часть сероорганических соединений остается в тяжелых дистиллятах и остатках. При разделении нвфтя1ных погонов с помощью хроматографии- на силикагеле или активной окиси алюминия эти соединения выделяются вместе с ароматическими углеводородами и смолами. Ниже приведены результаты хроматографического разделения на силикагеле средневязких дистиллятов сернистых и малосернистых нефтей (во всех случаях сера сопут- ствует ароматическим углеводородам и смолам) [1]  [c.22]

    Если крекинг иро водится при низком давлении, то винилхлорид мономер и ДХЭ в основном выделяются из охлажденного парового потока конденсацией или абсорбцией. НС1 ком-примируется и направляется в колонну оксихлорирования. При проведении крекинга при высоком давлении охлажденный паровой поток направляется прямо в дистилляционную подсистему, состоящую из двух колонн колонны восстановления безводного НС1 7 и колонны очистки винилхлорида 8. В колонне 7 безводный НС1 очищается от ацетилена и от винилхлорида, присутствие которых ири реакции оксихлорирования приводит к синтезу высокохлорированных побочных продуктов. В колонне 8 ДХЭ и другие высококипящие примеси отделяются фракционной перегонкой с целью получения мономера винилхлорида высокой степени чистоты. ДХЭ и высо-кокииящие примеси, так же, как и ДХЭ и тяжелые остатки из колонны, подвергаются повторной обработкезсистеме очистки ДХЭ 5. Очищенный ДХЭ возвращается в крекинг-печь 6, а тяжелые остатки (высокохлорированные органические соединения) в дальнейшем не используются и представляют собой отходы производства. [c.268]

    Мы рассмотрели, какие основные элементы входят в состав органических соединений, используемых в качестве присадок к маслам. Теперь остановимся на классах и типах соединений, содержащих различные функциональные группы, которые являются основной частью присадок. В настояихее время практическое применение в качестве присадок к маслам в основном находят следующие типы соединений алкилфенолы, сульфонаты, сукцинимиды, алкилсалицилаты, полиметакрилаты, полиизобутилены, алкил-нафталины и диалкил(арил)дитиофосфаты и др. Из всех применяемых на практике присадок основная доля приходится на присадки алкилфенольного и сульфонатного типов. В ближайшее время намечается увеличить количество сульфонатных присадок. Предполагается также создание перспективной сырьевой базы для производства алкилсалицилатных, а также сукцинимидных, полиметакрилатных и других полимерных присадок. Особое внимание следует обратить на перспективные направления синтеза зольных и беззольных полимерных присадок. [c.10]

    Пожаро- и взрывоопасность производства основных мономеров для СК усугубляется способностью диеновых и ацетиленовых углеводородов в результате контакта с воздухом окисляться в процессе получения и хранения с образованием перекисных, гидроперекис-ных и полимерных соединений. Многие перекисные и гидропере-кисные соединения взрывчаты. Поэтому перегонка продуктов, содержащих даже небольшие количества перекисей, если не принимать особых мер предосторожности, связана с опасностью взрыва, так как вследствие относительно малой летучести органические перекиси и продукты их разложения накапливаются в нижней части ректификационных колонн. Кроме того, в процессе получения диеновых углеводородов при определенных условиях возможно образование так называемого губчатого полимера, представляющего собой нерастворимый неплавкий гранулированный продукт. Превращение жидкого мономера в губчатый полимер сопровождается значительным увеличением объема. При этом в отдельных замкнутых участках возникает давление, способное вызвать разрыв стального оборудования. Особенно опасно накопление губчатого полимера в тупиковых участках трубопроводов и в теплообменных аппаратах. Некоторые продукты полимеризации диеновых [c.248]

    Основные, общие формулы блоксополимеров окисей алкиленов, синтезируемых на основе различных органических соединений, приведены выше. Авторами синтезирован ряд деэмульгаторов — блоксополимеров окисей этилена и пропилена на основе жирных кислот, одноатомных спиртов и фенолов, двухатомных спиртов и фенолов, этилендиамина, этаноламинов, гекситов. Технология производства блоксополимеров окисей этилена и пропилена описана в гл. VII. [c.115]

    Реакции, протекающие при взаимодействии углеводородов, содержащихся в нефтяных фракциях, с молекулярным кислородом, имеют огромное практическое значение в процессах хранения и сгорания моторных топлив, при использовании смазочных масел, а также в технологии основного органического синтеза при производстве ряда кислородных соединений углеводо-оодов (альдегиды, кетоны, спирты, эфиры, кислоты и т. п.). [c.163]

    ГИДРАТАЦИЯ И ДЕГИДРАТАЦИЯ КАТАЛИТИЧЕСКИЕ —реакции присоединения (гидратация) или отщепления (дегидратация) воды от органических соединений. Г. и Д. к.— одни из основных реакций органической химии. Основными видами реакций гидратации являются гидратация олефинов в спирты, ацетиленовых углеводородов в альдегиды и кетоны, нитрилов в амиды. На этих реакциях основываются промышленные способы производства важнейших продуктов органического синтеза. Реакции дегидратации составляют основу большинства реакций поликонден-сацин, играющих огромную роль при получении полимеров, алкидных или гли-фталевых смол, полиамидных волокон (найлона), мочевиноформальдегидных смол 1 др. [c.72]

    Тремя основными источниками сырья для производства синтетических органических продуктов являются каменный уголь, нефть и растительные вещества. При достаточной изобретательности химика-органика любой из этих видов сырья может стать источником всех необходимых для химической промышленности исходных ве1цеств. Действительно, любое из органических соединений, описанных в справочнике Бейльштейна, можно синтезировать тем или иным путем, исходя из метана или в конечном счете из угля или кокса. Однако технолог должен принимать во внимание не только возможные, но также и наиболее экономичные методы. Выбор их зависит от новых технологических открытий и от наличия и стоимости сырых материалов, причем эти факторы могут непрерывно изменяться. Естественные ресурсы промышленных стран неодинаковы, но влияние этого на выбор того или иного метода производства может усиливаться или ослабляться в результате определенных государственных мероприятий. Примерами этому служат поддержка, которую в течение многих лет оказывало правительство Великобритании производству этилового спирта, и политика автаркии гитлеровской Германии, которая привела к широкому развитию химии ацетилена в этой стране. [c.11]

    В настоящем пособии мы сосредоточим внимание на основных методах получения углеводородов различных типов (алканы, олефины, диены, ароматические соединения), а также способах синтеза их самых важных функщюнальных производных (алкил-, кислород-, хлор-, азотсодержащих соединений и т.д.). Поскольку обьршо наиболее распространены (и практически широко используются) первые два-три представителя из каждого гомологического ряда органических соединений, в книге рассмотрены методы и технологии именно их получения. Про-мьшменные производства большинства таких соединений имеются на нефтеперерабатывающих и нефтехимических предприятиях Республики Башкортостан. [c.10]

    В Приложение книги вынесены вопросы для семинарских занятий, на которых рассматриваются основные теоретические положения органической химии, механизмы химических реакций, номенклатура и изомерия, а также специальные разделы лекционного курса (кремнийорганические соединения, ПАВ, полимерные материалы и их приме-нёйие в строительстве) и др. Там же приведены краткие сведения о справочной и ре ративной литературе по органической химии и литературе по использованию органических продуктов в строительстве и производстве строительных материалов, рекомендации по приготовлению реактивов для лабораторных работ, правила номенклатуры органических соединений и другой справочный материал. [c.4]

    Серная кислота является одним из важнейших химических продуктов основной химической промышленности. В 1962 г. в нашей стране было произведено 6,132 млн. пг серной кислоты. Большинство химических соединений получается при прялюм или косвенном участии серной кислоты. Она употребляется для производства таких важных продуктов, как соляная и уксусная кислоты, удобрительные туки (суперфосфаты, сульфат аммония и др.), взрывчатые вещества, органические красители, лекарственные препараты и т. п. Она применяется также в свинцовых аккумуляторах, для очистки нефтяных продуктов, сульфирования органических соединений и т. д. [c.580]


Смотреть страницы где упоминается термин Производство основных органических соединений: [c.614]    [c.67]    [c.196]    [c.202]    [c.16]    [c.215]   
Смотреть главы в:

Аккумулятор знаний по химии -> Производство основных органических соединений

Аккумулятор знаний по химии -> Производство основных органических соединений

Аккумулятор знаний по химии -> Производство основных органических соединений




ПОИСК





Смотрите так же термины и статьи:

Основность органических соединений

Основность соединений



© 2025 chem21.info Реклама на сайте