Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Железо хромоникелевых сталях

    В колонне находились змеевик для охлаждения, нагревательный змеевик и распределитель воздуха, изготовленные из хромоникелевой стали марки У2А. Степень превращения гача составляла 30%. Кислоты и другие продукты окисления, летучие в условиях работы, поступали в промывные скрубберы высотой 11 м, сделанные из железа и футерованные иенским стеклом, чтобы избежать коррозии [67], [c.453]


    Структура хромоникелевых сталей зависит от содержания легирующих элементов. Растворяясь в железе, они оказывают большое влияние на положение критических точек АЗ и А4 (рис. 9.1). [c.250]

    Оптическими методами было установлено, что на нове[)Х1ю-сти железа, запассивированного в концентрированной азотной кислоте, образуется невидимая пленка, толщина которой составляет 2—3 н.м на углеродистой стали, запассивированной в этих же условиях, образуется более толстая пленка (9—11 нм), на хромоникелевой стали — более тонкая (0,9—1 нм) защитная пленка на алюминии в зависимости от условий имеет различную толщину — от 5 до 100 нм и т. д. [c.62]

    Контактный аппарат с неподвижным слоем катализатора, работающий под давлением до 20 ат, представляет собой кожухотрубный аппарат, трубки которого заполнены зернами катализатора. Так как окислы железа ускоряют реакцию взаимодействия этилена с кислородом с образованием двуокиси углерода, трубки аппарата изготовляют из хромистых и хромоникелевых сталей. Медь и ее Сплавы даже с небольшим количеством ацетилена, содержащегося [c.174]

    Катодная защита резервуаров с горячей водой, изготовленных из коррозионностойкой (нержавеющей) стали, в принципе тоже возможна. Она целесообразна в первую очередь в тех случаях, когда требования DIN 50930 [3] в отношении свойств материала и содержания ионов хлора в воде не выдерживаются. При использовании магниевых протекторов с изолированной проводкой можно отрегулировать ток промежуточным включением сопротивлений до требуемой малой величины защитного тока, обеспечивающей предотвращение язвенной коррозии. Поскольку защитный потенциал высоколегированных хромоникелевых сталей согласно разделу 2.4 составляет примерно 0н=0,0 В, в качестве протекторов могут быть применены также алюминий, цинк и железо, так как даже и при пассивации этих материалов движущее напряжение остается достаточно большим. [c.402]

    Значения основных пассивационных характеристик железа, хрома, никеля и некоторых их сплавов приведены в табл. 1. Для большого числа других хромистых и хромоникелевых сталей эти характеристики приведены в работе [55]. [c.21]

    Поведение хромоникелевых сталей в области потенциалов, соответствующей перепассивации хрома и никеля, зависит от их состава. Бинарные сплавы Ге—Сг не подвергаются перепассивации, если содержание в них хрома остается ниже 13% [51]. Сплавы с более высоким содержанием хрома равно как и сплавы, содержащие никель, подвержены перепассивации [122, 129], причем одновременно появляется и область вторичной пассивности [51,54]. При этом, судя по величинам предельных токов, хромистую сталь тем труднее перевести в область вторичной пассивности, чем выше в ней содержание хрома (рис. 13). Последнее несомненно является логическим следствием отмеченных выше различий в поведении железа и хрома в рассматриваемой области потенциалов, [c.28]


    Аналогично железу, хрому и никелю пассивируются высоколегированные хромистые и хромоникелевые стали. На рис. 8 приведены типичные поляризационные кривые хромистой стали. Определяющим элементом является хром стали с содержанием хрома менее 10 % по своим свойствам ближе к железу, тогда как стали с содержанием 15 "/о и более ближе к хрому. [c.33]

    Капилляры чаще всего изготовляются [53] из нержавеющей стали, в первую очередь из аустенитовой хромоникелевой стали, содержащей кроме железа в зависимости от типа стали 16—20% Сг, 8—14% N1, до 2% Мп, 1% 51, 0,08% С, 0,045% Р и 0,030% 5. Медноникелевые сплавы, также применяемые в качестве материала для изготовления колонок, содержат кроме меди 29—32% N1, 0,4—0,7% Ре, до 1% 2п, 1% 5п, 1% Мп и 0,05% РЬ. Медные колонки использовались главным образом в начале развития капиллярной газовой хроматографии Т43, 47, 230], позднее выяснилось, что медные поверхности отличаются высокой активностью. Алюминиевые капилляры [117, 168], как и медные, можно вытягивать в лаборатории. Хорошие результаты получены при разделении на никелевых капиллярных колонках [17, 2301. [c.45]

    Соединения тория и урана Хромоникелевые стали Сплавы на основе железа [c.20]

    Наиболее химически стойкими металлами, применяемыми в ракетной технике, являются алюминий и его сплавы, высококремнистое железо, а также некоторые сорта нержавеющих сталей, например хромистые и хромоникелевые стали [37]. Обычная малоуглеродистая сталь, а также медь, латунь, бронза, свинец и др. быстро разрушаются под действием окислителей на основе азотной кислоты. [c.663]

    Системы железо—никель и железо—хром—никель подробно рассмотрены в работе [56]. Сплавы железа с никелем образуют в основном у-твердые растворы. Никель сильно снижает критические точки, фиксирующие превращение у- в а-железо, причем точки на диаграмме состояния, соответствующие превращению а- в у-железо, с увеличением содержания никеля смещаются вверх, а точки, соответствующие превращению у- в а-железо, смещаются вниз. Превращения у —> а при охлаждении и а у при нагреве никелевых и хромоникелевых сталей происходят с большим гистерезисом. [c.158]

    С. С. Носырева [250], изучая влияние структуры стали на проницаемость ее для катодного водорода с помощью прибора Эдвардса (раздел 1.3.1), установила, что армко-железо и трансформаторная сталь, имеющие объемно-центрированную решетку а-железа с 9 атомами в узлах и центре куба, обладают большей проницаемостью для водорода, чем нержавеющая сталь (гранецентрированная решетка аустенита с 14 атомами Ре). Появление водорода на выходной стороне мембраны толщиной 0,5 мм из нержавеющей хромоникелевой стали 18—8 замечено [c.79]

    Хромистая сталь (23—27%). Хромистая сталь 18—8. . , Хромоникелевая сталь 25—20 Хромоникелевая сталь 4-Мо Железо — кремний 15%. . .  [c.250]

    В присутствии кислорода повышается способность лития растворять никель, а в присутствий азота — хром. Для изготовления аппаратуры, работаюш.ей в жидком литии, можно использовать ограниченное число металлов чистое железо, ниобий, тантал, молибден. Низкоуглеродистые, хромовые и хромоникелевые стали, никелевые и кобальтовые сплавы могут применяться при температуре 400. .. 500 С. ш [c.546]

    Хром, никель, молибден, титан, аустенитные хромоникелевые стали, содержащие более 3 % молибдена, практически не склонны к щелевой коррозии. Следует иметь в виду, что продукты коррозии железа занимают объем больший, нежели железо, из которого они образовались. При наличии щелей в конструкции могут возникнуть высокие напряжения, способствующие деформации конструкций. Там, где это допустимо, целесообразно наносить [c.607]

    Как известно, коррозионная стойкость хромистых и хромоникелевых сталей основана на их способности пассивироваться, т. е. стационарные потенциалы этих сталей находятся в пассивной области анодной поляризационной кривой. Большое влияние на потенциалы, ограничивающие пассивную область на анодной поляризационной кривой (особенно на потенциал активирования), оказывает хром. Увеличение содержания хрома в сплавах железо-хром смещает потенциал активирования в отрицательную сторону, что приводит к расширению пассивной области сплава [1], [6]. Потенциал начала области перепассивации также несколько смещается в отрицательную сторону [1], [12], [23] или практически остается постоянным при всех [c.93]

    Для иредотвращения сульфидной и водородной коррозии аппаратуру установки, работающей при высокой температуре, изготовляют из хромоникелевой стали. Для борьбы с хлоридной коррозией и загрязнением хлоридами в низкотемпературные секции реактора подают аммиак, в поток сырья добавляют ингибиторы коррозии или применяют аппаратуру из сплавов с примесью никеля. Чтобы предотвратить загрязнение аппаратов осадками хлористого аммония, образовавшегося после подачи аммиака или из хлор- и азотсодержащих соединений, и растрескивание стали в теилообменниках и трубопроводах, аппараты во время ремонта и остановок промывают водой и разбавленными щелочными растворами. Кроме того, необходимо тщательно следить за аппаратурой и оборудованием установки, а также контролировать содержание железа в конденсационных водах, сбрасываемых с установки. В случае обнаружения железа в повышеиных количествах необходимо определить место коррозионного поражения. Для уменьшения коррозии образующийся в процессе сероводород абсорбируют 15%-ным раствором. моноэтаноламина и после десорбции удаляют из системы. [c.200]


    ЭПХГ обладает высокой химической активностью, при его гидролизе идут побочные реакции. Например, ЭПХГ может легко полимеризоваться, чему способствуют повышение температуры и контакт с некоторыми металлами, особенно с железом. В зависимости от применяемого катализатора получаются подвижные жидкости, высоковязкие масла или смолообразные продукты. Поэтому аппаратуру и трубопроводы для ЭПХГ рекомендуют делать из хромоникелевых сталей [167, 168]. Описан ионный механизм полимеризации эпоксидной группы под действием кислотных или щелочных катализаторов с образованием соединений типа полимерных простых эфиров [169]. В случае присутствия кислотного катализатора реакция протекает следующим образом  [c.41]

    В разделе 1 уже отмечалось, что процесс крекинга требует большой затраты тепла даже для реакции разрьша цепи требуется приблизительно 18 ккал1моль расщепляемого углеводорода. Поскольку продолжительность пребывания углеводородов в зоне крекинга обычно мала (особенно при высокотемпературном процессе), возникает задача быстрой передачи тепла при высокой температуре от одного газа (топочные газы ) к другому (пары углеводородов). С такой проблемой часто сталкиваются при проектировании аппаратуры, применяющейся в промышленности химической переработки нефти. Большинство крекинг-печей состоит из секций узких трубок, через которые с большой скоростью проходят пары углеводородов эти трубки нагреваются за счет радиационного излучения топочных газов. Крекинг под давлением имеет два эксплуатационных преимущества сравнительно меньшие размеры крекинг-установки для данной производительности и лучшая теплопередача. Выход газа при применении высоких давлений сравнительно меньше. Второй задачей является выбор материала для изготовления реактора коекинг-печи. Этот материал должен обладать необходимой механической прочностью в условиях проведения крекинга он не должен влиять каталитически на процесс, в особенности не должен ускорять образование нефтяного кокса. При высокой температуре железо и никель вызывают отложение кокса на стенках реактора. В наиболее жестких условиях обычно применяют хромоникелевые стали (25% хрома и 18% никеля) в случае более умеренных режимов используют ряд легированных сталей, например аустенитные и молибденовые. С двумя новыми методами разрешения проблем, связанных с теплопередачей и выбором конструктивных материалов, читатель ознакомится позже, при описании дегидрирования этана. В этом случае для достижения высокой степени превращения процесс проводят при температуре около 900° (см. стр. 119). [c.113]

    Самой высокой коррозионной устойчивостью в расплавленном свинце обладают тантал и ниобий. Железо, углеродистая сталь, хромистые и хромоникелевые стали имеют хорошую устойчивость до 500—600°С. При более высоких температурах она понижается, так как наблюдается растворение преимущественно по границам зерен. Стали перлитного типа устойчивы к действию свинца при температурах до 600°С. Хромистые нержавеющие стали ферритного и мартенсигного типов (1X13, Х17) обладают высокой коррозионной устойчивостью до 540°С. [c.90]

    Для хромоникелевых сталей с содержание.м хрома до 20% достаточно 8-10% N1, для перевода структуры ста11и из ферритной (характерной для хромистых сталей) или аустенито-ферритной (содержащей N1 до 8%) в более гомогенное аустенитное состояние во всем диапазоне температур, вплоть до плавления. Это обеспечивает меньщую склонность к росту зерна, лучшие механические свойства, эффективно понижает порог хладноломкости, делает сталь более коррозионностойкой. Никель, так же, как и хром, образует с железо.м твердые растворы при всех пропорциях компонентов, поэтом сталь легко пассивируется на воздухе, обеспечивая высокую коррозионную стойкость в слабоокисляющих и неокисляющих растворах, В соответствии со структурой и содержанием основных легирующих элементов (-18% Сг и от 8 до 10% N1) такие отечественные стали принято соответственно называть аустенитные хромоникелевые коррозионностойкие (нержавеющие) стали типа 18-8, 18-9, 18-10 , а в сокращенном современном варианте - стали типа 18-10 , [c.82]

    Экспериментально устанорлено, что в аппаратах малого объема материал стенок аппарата заметно влияет как на скорость реакции, Так и на качества продуктов полимеризации. В аппаратах малого объема (до 100 л), изготовленных из железа, полимеризация протекает медленно, выходы масел небольшие и качества масел низкие. Замена железа хромовыми и хромоникелевыми сталями (напрнмер сталь У-2А с содержанием 18% хрома и 8% никеля или сталь N-6 с содержанием 6% хрома, 0,35% молибдена и 0,25% ванадия) резко повышает скорость реакции, увеличивает выходы и улучшает свойства получающихся масел. [c.88]

    В электрохимическом поведении и, в частности, в величинах K для пассивных железа и никеля, химически очень сходных между собой, наблюдаются существенные различия. Для никеля Феттер и Арнольд установили сильную зависимость от потенциала, как это показано на рис. 349, где представлены данные для различных значений pH. При этом в области потенциалов, близких к нотенциалу выделения кислорода, был обнаружен своеобразный максимум. Подобные явления были обнаружены М. Пражаком, В. Пражаком и Чигалом для различных хромоникелевых сталей. Окамото и сотрудники нашли, что при температурах 40 и 70 °С для пассивного никеля в узкой области потенциалов плотность коррозионного тока также не зависит ог потенциала, что, однако, не подтвердилось в исследованиях Феттера и Арнольда . Необходимо отметить, что Колотыркиным была найдена значительно большая величина плотности коррозионного тока K - [c.805]

    Сахарный сироп поступает в стерилизатор 4, где смешивается с раствором питательных солей, предварительно приготовленных в эмалированных или нержавеющих бачках, и подвергается стерилизации кипячением. Стерилизатор представляет собой вертикальный аппарат, корпус которого изготовлен из хромоникелевой стали или алюминия, а пропеллерная мешалка — из хромоникелевой стали. Аппарат снабжен змеевиком и барботе-, ром для перемешивания, которые, так же как и примыкающая к аппарату коммуникация, выполнены из хромоникелевых или алюминиевых труб. Нижний патрубок аппарата соединен с трубопроводом, идущим в камеру брожения. Соединение осуществляется при помощи короткого резинового шланга, перекрываемого винтовым зажимом, что представляет для производственников значительные удобства при промывке и пропарке аппарата и трубопровода. В этом же аппарате изготовляется необходимый для выращивания пленки гриба питательный раствор, в котором, кроме сахара и хлористого аммония, содержатся небольшие количества (от 0,005 до 0,5 г л) сернокислого магния, цинка и железа, а также однозамещенного фосфорнокислого калия и соляной кислоты (pH среды 4,5—4,0). Питательный раствор засеивается спорами кислотообразующего гриба, который заливается в виде суспензии из инокулятора— бидона с нижним патрубком, изготовленного из алюминия или нержавеющей стали. [c.84]

    Когда концентрация кислоты в вакуум-аппарате достигнет 50%, ее сливают в деревянный заделывательный чан 23 и подвергают окончательной обработке с целью обеспечения полного разложения лактата, удаления следов железа и обесцвечивания (активированным углем). Обработанная таким образом кислота после охлаждения фильтруется на деревянном фильтрпрессе и собирается в сборник 29, который может быть сделан из обычной стали, но защищен эмалью или освинцован. Сборник может быть также изготовлен из хромоникелевой стали 1Х18Н9Т, хромоникелемолибденовой стали Х18Н12М2Т и алюминия. Последний при достаточной чистоте (марка АВ 2) обладает высокой стойкостью к ненагретым растворам молочной кислоты, если в них не присутствуют ионы хлора. [c.113]

    КИСЛОТОСТОЙКИЕ МАТЕРИАЛЫ — материалы, отличающиеся повышенной кислотостойкостью, вид химически стойких материалов. В пром. масштабах используются с середины 18 в. Различают К. м. металлические и неметаллические. К металлическим К. м. относятся сплавы на основе железа, а также цветные металлы и их сплавы (см. также Кислотостойкие сплавы). Кислотостойкие сплавы на основе железа углеродистые стам (нелегированные, низколегированные), содержащие до 1% С высоколегированные стали, имеющие в своем составе хром, никель, медь, марганец, титан и др. хим. элементы чугуны (нелегированные, высоколегированные), содержащие более 2,5—2,8% С. Кислотостойкие цветные металлы никель, медь, алюминий, титан, цирконий, олово, свинец, серебро, ниобий, тантал, золото, платина и др. Углеродистые стали стойки в растворах холодной азотной к-ты (концентрация 80—95%), серной к-ты (выше 65%) до т-ры 80° С, в плавиковой к-те (выше 65%), а также в смесях азотной и серной к-т. На углеродистые стали сильно действуют органические к-ты (адипиновая, муравьиная, карболовая, уксусная, щавелевая), особенно с повышением их т-ры. Высоколегированные стали, отличаясь повышенной стойкостью к коррозии металлов (см. также Коррозионностойкие материалы), являются в то же время кислотостойкими. Большинство легирующих добавок значительно повышают кислотостойкость сталей. Так, медь придает хромоникелевым сталям повышенную стойкость к серной к-те. Сталь с 17—19% Сг, 8-10% Мп, 0,75-1% Си, 0,1% С и 0,2—0,5% Si стойка в азотной к-те (любой концентрации и т-ры вплоть до т-ры кипения) и многих др. хим. соединениях (см. Кислотостойкая сталь). Кислотостойки высоколегированные чугуны никелевые, хромистые (см. Хромистый чугун), алюминиевые (см. Чугалъ), высококремнистые (ферросилиды), хромоникель-медистые (см. Нирезист), хромони-келькремнистые (никросилал). Наиболее распространены ферросилиды [c.586]

    В процессе изготовления аппаратуры и оборудования из коррозионностойких сталей, вследс -вие неправильной термической обработки или при сварке могут возникнуть условия, вызывающие межкристаллитную коррозию. По современным представлениям преимущественное разрушение границ зерен обусловлено электрохимической неоднородностью поверхности, возникающей в определенном для данного сплава интервале температур в результате структурных превращений. Например, при нагреве хромоникелевых сталей при 600—800 °С происходит выделение из твердого раствора сложных карбидов, содержащих хром, железо и никель. Эти карбиды выпадают преимущественно но границам зереи, что приводит к обеднению отдельных участков сплава хромом. Наиболее сильное обеднение наблюдается в зоне, непосредственно прилегающей к границе рерна. Имеются и другие факторы, способствующие межкристаллитной коррозии. Например, для коррозионностойких сталей, содержащих молибден, большое значение приобретает выделение о-фазы, также способствующей обеднению хромом прилегающих к границам участков. Перераспределение хрома в коррозионностойких сталях возможно и в результате выпадения высокохромистого феррита — продукта распада аустенита, что вызывает межкристаллитную коррозию, например, сварных швов. Существует мнение, что на склонность к межкристаллитной коррозии влияют также и внутренние напряжения. [c.55]

    По отношению к хрому активирующее действие ионов хлора не проявляется, хром очень легко пассивируется при анодной поляризации в растворах хлоридов, и поэтому влияние SO 4"" не может быть выявлено. На молибденовый электрод ионы сульфата в присутствии хлоридов не оказывают влияния. По отношению к твердому раствору железо — хром (сталь Х28) пассивирующие свойства сульфат-ионов проявляются вполне определенно (рис. 150). В чистом хлориде эту сталь можно заполяризовать лишь до потенциала +0,6 в, после чего она переходит в активное состояние. В присутствии же сульфата сталь удается заполяризовать до +1,2 в. Наблюдаемый эффект аналогичен тому, который был получен на хромоникелевой стали IX18H9T. [c.307]

    В расплавленном свинце наиболее высокой коррозйШ- ной стойкостью обладают тантал и ниобий. Железо, углеродистые, хромистые и хромоникелевые стали стойки до [c.546]

    При значениях потенциала, близких к 1100—1150 мв, кривая ток—потенциал снова становится параллельной оси ординат. Наблюдается область вторичной независимости анодного тока от потенциала. Явление вторичной пассивности специфично для хромистых и хромоникелевых сталей в растворах H9SO4. Оно имеет место и в растворах уксусной кислоты. Одно из вероятных объяснений явления вторичной пассивности может заключаться в образовании на поверхности стали защитной окисной пленки железа, тормозящей растворение стали. Образование этой пленки может происходить за счет кислорода, выделение которого происходит в кислых средах по уравнению [c.29]


Смотреть страницы где упоминается термин Железо хромоникелевых сталях: [c.10]    [c.214]    [c.323]    [c.417]    [c.422]    [c.848]    [c.316]    [c.316]    [c.37]    [c.248]    [c.67]    [c.90]    [c.196]    [c.355]    [c.627]    [c.790]    [c.11]    [c.756]    [c.307]   
Коррозия химической аппаратуры и коррозионностойкие материалы (1950) -- [ c.119 ]




ПОИСК





Смотрите так же термины и статьи:

Железо хромоникелевая

хромомарганцовистоникелевую сталь хромоникелевую сплавы железо золото



© 2025 chem21.info Реклама на сайте