Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Кислоты каталитическое влия

    Константа а рассматривается как мора чувствительности реакции (катализа) к кислотности (или основности) катализатора. С точки зрения изменения свободной энергии мон но сказать, что а есть мера той доли изменения свободной энергии ионизации, которое происходит при образовании активированного комплекса. Соотношение Бренстеда нельзя использовать в виде уравнения (XVI.3.1). Б величины Ацл и К а должны быть внесены поправки, которые возникают из-за изменений симметрии и не влияют на внутренние химические и.шенения, происходящие в системе. Поскольку К я к выражены в моль/л, можно ожидать, что двухосповпые кислоты, н которых две карбоксильные группы удалены друг от друга на значительное расстояние, будут в 2 раза более эффективными (на 1 моль), чем одноосновные кислоты, такие, как уксусная кислота. Наоборот, сравнив каталитическую активность оснований, можно прийти к выводу, что формиат-ион H O в 2 раза эффективнее в реакцип присоединения протона, чем этокси-ион С2Н5О, так как первый может присоединять Н к любому из двух ато- [c.485]


    Если наблюдается только специфический катализ кислотой 5Н+, стадия 1 должна быть быстрой, а стадия 2 — лимитирующей, поскольку между А и наиболее сильной кислотой, присутствующей в растворе, а именно 5Н+, быстро устанавливается равновесие. В то же время, если более быстрой является стадия 2, равновесие не успевает установиться и лимитирующей должна быть стадия 1. На эту стадию влияют все присутствующие в системе кислоты, и скорость отражает их суммарный эффект (общий кислотный катализ). Общий кислотный катализ наблюдается также в тех случаях, когда медленной стадией является реакция комплекса с водородными связями А---НВ, поскольку каждый комплекс реагирует с основанием с разной скоростью. Аналогичным образом можно рассматривать общий и специфический основной катализ [83]. Дополнительную информацию можно получить из значений а и р в каталитических уравнениях [c.336]

    Процесс гидролиза амидных групп также зависит от каталитического влияния соседних групп. Этот факт был однозначно доказан при исследованиях кинетики гидролиза полиамида фталевой кислоты [66], показавших, что в этом случае каталитически влияет соседняя неионизированная [c.33]

    На некоторые виды протекающих в растворах превращений, каталитически влияют не только минеральные кислоты и основания или ионы Н+и 0Н , возникающие при электролитической диссоциации органических кислот и оснований, но и недиссоциированные молекулы органических веществ, а также такие продукты диссоциации, как органические катионы оснований и анионы органических кислот. При образовании анилидов из органических кислот и анилина пикриновая кислота действует как сильный катализатор. Полагают, что пикрат анилина, являясь промежуточным продуктом, вступает в обмен с органической кислотой, давая анилид [193, 194]. [c.206]

    Применение формальдегида основано на различии в скоростях реакции конденсации формалина с нафталином и тионафтеном Процесс формальдегидной очистки ведется в присутствии 90— 94 %-ной серной кислоты, которая необходима для конденсации непредельных соединений, содержащихся в техническом нафталине Образующиеся смолы хорошо растворяются в серной кислоте и поэтому легко разделяются с отработанной серной кислотой В процессе очистки происходит частичное сульфирование нафталина и тионафтена Но в связи с тем, что расход кислоты небольшой, эта реакция существенно не влияет на выход нафталина Серная кислота каталитически воздействует на реакцию конденсации тионафтена 354 [c.354]


    Актуальность темы. Современные дизельные топлива (ДТ) получают из смеси прямогонных дизельных фракций и гидроочищенных компонентов. В ряде случаев в смесевое топливо вовлекаются газойли каталитического крекинга и гидрокрекинга. В условиях хранения и эксплуатации при действии растворенного кислорода в топливе накапливаются низкомолекулярные продукты (гидропероксиды, спирты, карбоновые кислоты и др.), вступающие в реакции уплотнения (этерификации, конденсации, полимеризации) с образованием высокомолекулярных соединений, часть которых медленно коагулирует в нерастворимые соединения, вызывая осадко- и смолообразование. Осадки загрязняют топливные фильтры и отрицательно влияют на работу топливных насосов высокого давления. При работе двигателя смолы отлагаются на горячей поверхности распылителей форсунок и впускных клапанов, что приводит к неравномерной подаче топлива и, вследствие этого, к увеличению дымности и токсичности отработавших газов. При работе с закоксованными форсунками содержание углеводородов в отработавших газах увеличивается в 2 раза, оксида углерода - на 30%, твердых частиц - в 1,5 раза. [c.3]

    На реакции гидролиза, нейтрализации и изомеризации органи ческих соединений, происходящие в растворах с переносом прото нов (протолитические реакции), оказывают каталитическое влия ние кислоты и основания. Общая схема таких реакций, например при специфическом катализе кислотой НА (в частности ионом Н3О+), имеет вид  [c.257]

    Механизм каталитического действия солей металлов сложен, поскольку после участия в начальной реакции окисления катализатор вступает во взаимодействие с продуктами аутоокисления. Например, при окислении керосина катализатор ускоряет реакцию в начальный период, но по мере ее протекания осаждается и затем не оказывает влияния на дальнейшие реакции. Скорость инициирования можно ограничить, применяя энергичные жидкофазные антиокислители. Скорость образования свободных радикалов определяется срабатыванием антиокислителя, обычно расходуй щегося только в реакциях со свободными радикалами. Наблюдаются изменения окраски продукта, определяющиеся изменением валентности или степепи окисления иона металла, т. е. простой реакцией передачи электрона. При окислении циклогексана в присутствии стеарата кобальта металл осаждается в виде соли адипиновой кислоты. Катализатор влияет ие только на скорость, но и на направление реакции, т. е. на состав про- [c.300]

    Органические кислоты каталитически ускоряют распад ПВХ, причем при одном и том же молярном содержании двухосновные кислоты увеличивают разложение полимера в большей степени, чем одноосновные (рис. 23) Интенсивность разложения ПВХ зависит от силы кислоты. Монохлоруксусная кислота оказывает более сильное каталитическое действие, чем другие, но менее сильные одноосновные кислоты. Щавелевая кислота мало влияла, а стеариновая кислота заметно увеличивала скорость термического распада полимера. К сожалению, выбранная в работе методика исследования не отличается строгостью — уже с самого начала термического воздействия в замкнутой системе появляется НС1, поэтому приведенные  [c.87]

    На каталитическую активность кислотных катализаторов влияют и апротонные растворители вследствие образования координационных связей, деформирования за счет этого молекул катализатора и образования более сильной кислоты. [c.91]

    На долю триметилбензолов приходится около 35% общего количества ароматических углеводородов бензольного ряда, образующихся при каталитическом риформинге, но пока они используются в качестве химического сырья незначительно [64]. Перспективы использования полиметилбензолов определяются прежде всего возможностью окисления их в три- и тетракарбоновые кислоты ароматического ряда и их ангидриды. Эти полифункциональные мономеры пригодны для получения термостойких полимеров и полиэфиров, а также низколетучих пластификаторов. Интересной может быть также высокая селективность замещения полиметилбензолов, в особенности имеющих симметричную структуру дурола и мезитилена. 100%-пая селективность замещения достигается при получении производных изодурола, пренитола и, естественно, пентаметилбензола. Псевдокумол дает 80% 1,2,4,5-заме-щенного и 20% 1,2,3,4-изомера, при замещении гемимеллитола получают 95% 1,2,3,5-изомера [107]. Правда, высокая селективность замещения еще не определяет возможности крупнотоннажного производства соответствующих производных. Приходится считаться и со стерическими препятствиями, которые неблагоприятно влияют на реакционную способность получаемых веществ. [c.88]

    Аз Оз дезактивирует платину при гидрировании, но значитель-но меньше влияет на разложение перекиси водорода. Следы висмута дезактивируют железные гидрирующие контакты, но тот же висмут является хорошим активатором железа для окисления аммиака в азотную кислоту. Таких примеров можно привести очень много, и все они указывают на особую природу и исключительную избирательность каталитических процессов. [c.68]


    При одном и том же значении потенциала электрода скорость и даже направление электродных процессов могут существенным образом зависеть от адсорбции компонентов раствора. Так, сильное влияние на кинетику и механизм превращений органических веществ на окисленном электроде оказывает природа аниона и катиона фона. Это коррелирует с их различной адсорбируемостью, а также с возможностью специфического каталитического действия заряженных частиц (например, при внедрении их в оксидный слой). Так, при окислении на Р1-электроде фенилуксусной кислоты в метанольно-пиридиновых растворах добавление СЮ4 -анионов приводит к резкому снижению выхода димера в области потенциалов электросинтеза Кольбе, а основным продуктом становится бензилметиловый эфир. Это можно объяснить конкурирующей адсорбцией РЬ СН и С104 . Специфическая адсорбция катионов положительно влияет на выход димеров по Кольбе и Брауну—Уокеру. При электролизе растворов ацетатов в зависимости от природы катиона выход этана возрастает в ряду Li+нитрат-анионы — с другой, по-разному влияют на селективность анодных превращений ацетата в щелочных водных растворах в частности, первые из них увеличивают, а вторые практически не изменяют выход спирта. [c.290]

    Серная кислота очень часто применяется при реакциях этерификации. Уже небольшая добавка ее действует каталитически введенная в больших количествах она связывает образующуюся воду, что благоприятно влияет на выход эфира. Чаще всего серная кислота применяется в количестве 5—10% от количества взятого в реакцию спирта . [c.353]

    Катализатором, наиболее широко используемым в промышленности, является ион арсенита, As(0H)a0 , который вводится в раствор карбоната калия, используемый для абсорбции СОа, в виде арсенита калия или AS2O3. Константа скорости для арсенита составляет около 5000 л1 моль -сек) при 25 °С, а энергия активации— около 5700 кал/моль. Так как каталитическим действием обладает лишь анион, а не недиссоциированная мышьяковистая кислота, то значение константы [ at] скорости реакции первого порядка будет уменьшаться при снижении pH до уровня, при котором диссоциация будет частично подавляться. Это может происходить в карбонат-бикарбонатных растворах при обычных температурах. Однако в промышленных условиях абсорбцию СОа растворами поташа проводят чаще всего при температуре около 100 °С. В таких условиях константа диссоциации, видимо, достаточно велика, чтобы обеспечить практически полную ионизацию арсенита во всех участках абсорбционного аппарата. Шарма и Данквертс дают информацию о влия- [c.243]

    Решением этой проблемы явилось открытие соответствующих катализаторов (платина, пятиокись ванадия), которые ускоряют реакцию, не влияя на ее равновесие. Каталитическая реакция протекает не в газовой смеси, а на поверхности катализатора при соприкосновении с ней молекул. На практике двуокись серы, получаемую при сжигании серы или пирита, смешивают с воздухом и пропускают над катализатором при температуре 400—450 °С. В этих условиях примерно 99% двуокиси серы превращается в трехокись серы. Этот метод используют главным образом при производстве серной кислоты. [c.216]

    Взаимные превращения аномеров, наблюдаемые по изменению скорости мутаротации, ускоряются под действием кислотных и основных агентов. Чрезвычайно любопытно, что это ускорение наблюдается чаще всего при одновременном действии кислотного и основного агента, которые в отдельности слабее влияют на скорость мутаротации. Так, например, пиридин и крезол в отдельности не проявляют ускоряющего действия, однако их одновременное действие вызывает быструю мутаротацию. Особенно любопытно, что 2-оксипиридин (пиридон-2), сочетающий в себе свойства кислоты и основания, обладает сильным каталитически.м действием на процесс мутаротации. [c.47]

    На всех применяемых катализаторах в той или иной степени идет дегидратация циклогексанола с образованием циклогексена и воды Исследование факторов, определяющих дегидрирующие и дегидратирующие свойства различных катализаторов, показало, что чистая окись цинка является катализатором дегидрирования. Добавки кислот и соединений хлора повышают дегидратирующее действие, а добавка щелочи снижает [26] При температуре выше 400°С метод приготовления катализатора не влияет, на его каталитические свойства. [c.115]

    Реакции могут протекать в поверхностных слоях графита, и роль внедренной кислоты состоит в создании (регулировании) положительного заряда на его углеродных сетках. Если молекулы субстрата внедряются в незаполненное межплоскостное пространство графита, то реакция будет протекать без непосредственного контакта молекул субстрата с молекулами внедренных кислот, и направление реакции определяется в основном пространственными затруднениями, создаваемыми углеродными слоями графита. При локализации процесса в заполненном кислотами межплоскостном пространстве графита на процесс влияет природа кислоты-катализатора и вышеуказанные пространственные затруднения. Каталитическими центрами могут быть и внедренные кислоты, расположенные по краям кристаллов графита. В этом случае роль пространственных затруднений, создаваемых сеткой графита, должна быть незначительной. Самый неспецифический путь каталитического действия заключается в вымывании внедренных веществ в раствор и протекании реакции вне графита. Другими словами, слоистые соединения графита являются внутренними дозаторами катализатора. С точки зрения возбуждения реакций полимеризации мономера предпочтительны умеренные температуры процесса (-20°С), усиливающие влияние и природы внедренной кислоты, и параметров пространственной сетки графита. На это указывают зависимости эффективности катализатора от природы кислоты Льюиса и неактивность индивидуально взятых графита или кислоты [154, 155]. Низкие, как правило, скорости превращений определяют недостаточную технологичность катализаторов - соединений включения в графит, хотя у них есть и очевидные достоинства стабильность на воздухе, устойчивость к гидролизу, селективность в некоторых процессах. [c.60]

    Алкилсульфокислоты. При контактировании изобутилена с такими алкилсульфокислотами [621, как метил-, итил- и бутилсульфокислоты, а также смешанные алкилсульфокислоты, нри 30—70 и атмосферном давлении образовывались димеры, тримеры и тетрамеры с преобладанием тримеров. Содержание в сульфокислотах до 12% серной кислоты мало влияет или совсем не влияет на течение реакции нолимеризащш при температурах ниже 70. Активность этих кислот как катализаторов полимеризации изобутилена приблизительно эквивалентна каталитическому действию 75 %-ной серной кислоты. Хотя при применении серной кислоты как катализатора полимеризации изобутилена концентрация ее имеет решающее значение, тем пе менее для алкилсульфокислот были получены приблизительно одинаковые результаты при применении кислот с колебаниями концентраций в широких пределах — от 80 до 100%. [c.194]

    В некоторых спецификациях на топлива предусмотрено определение в них меди. Медь может попасть в топлива в процессе переработки, а также при длительном хранении присутствие ее в топливах нежелательно, так как медь каталитически влияет на процесс старения. Стандартами ФРГ предусмотрен метод DIN 51404, заключающийся в удалении меди из топлива серной кислотой и образовании в растворе гидроксиламмония комплекса с помощью диэтилдитиокарбамата. Этот комплекс, окращенный в желтый цвет, экстрагируют тетрахлорэтаном и фотометрически определяют интенсивность цвета. Концентрацию меди определяют пО предварительно построенным калибровочным кривым. [c.187]

    Скорость абсорбции увеличивается в присутствии различных солей, причем наиболее эффективными катализаторами являются сернокислая и хлористая соли закиси меди. В опытах при низких температурах катализаторы брались в количестве 1—5%. В присутствии 5% закиси меди этилен быстро абсорбируется 95%-ной серной кислотой при температуре 40°, образуя этилсерную кислоту с выходом 94%. В случае применения ртутного катализатора и соли закиси меди абсорбция происходит даже при более низких температурах. Эффективным катализатором является также сернокислая соль двухвалентной меди [180а]. В общей схеме [1806] удаления этилена из светильного газа путем абсорбции этилена кислотой крепостью 66° Вё в качестве катализатора предложено употреблять смесь 1% ртути с ванадиевой, урановой или молибденовой кислотами. В присутствии пенообразующего вещества каталитическое действие оказывают также коллоидное серебро и серебряные соединения [181]. Применяя катализаторы, можно вести абсорбцию при температуре реакционной смеси не выше 35° и таким образом избежать образования изэтионовой кислоты. Описана полупроизводственная абсорбционная установка [182], работающая с применением медного катализатора. Позднее [183] предложены некоторые другие соединения, ускоряющие процесс абсорбции. Катализаторы увеличивают только скорость абсорбции, но не влияют на ее полноту [184]. [c.35]

    Сернокислотное каталитическое разложение гидроперекисей пзопропил и втор.бутилбензолов в диоксане протекает по первому порядку как относительно гидроперекисей, так и катализатора [344]. Добавки ледяной уксусной кислоты не влияют, а добавки воды сильно замедляют реакцию кислотно-каталитического разложения указанных гидроперекисей. Уксусный ангидрид действует как сильный ускоритель реакции. Добавки метилэтилкетона и фенола до концентрации 0,1—0,5 моль л мало влияют на скорость разложения. [c.301]

    Азотная кислота пассивирует поверхность компактного тория и предотвращает его растворение. Однако в присутствии незначительных концентраций фторида или фторосиликата (0,01—0,03 М) процесс растворения в 8—16 N HNO3 идет до конца [1804, 1873]. Следы ионов фтора каталитически влияют и на растворение сплавов, а также окиси и других труднорастворимых соединений тория. Ионы фтора могут быть прибавлены в виде плавиковой кислоты или фторида натрия. Серная кислота взаимодействует с торием медленно. Сплавление небольших количеств образца с KHSO4 способствует растворению металлического тория [309]. При нагревании с фосфорной кислотой и последуюн ем упаривании металлический торий растворяется полностью, однако процесс растворения происходит чрезвычайно медленно. Действие концентрированной плавиковой кислоты на металл незначительно [1907]. Концентрированная горячая хлорная кислота медленно взаимодействует [c.17]

    Кинетические токи наблюдаются при полярографировании альдегидов — производных пиридина. И. Фольке [205] показал, что при восстановлении изомерных формилпиридинов предельные токи определяются скоростью дегидратации альдегидной группы, причем на эту скорость каталитически влияют и кислоты и основания, что обусловливает сложную зависимость высоты волн от pH растворов и их буферной емкости. При полярографировании аминоальдегидов и кетонов проявляется влияние не только гидратации, но и нротонизации их молекул по атому азота. [c.39]

    Н. С. Полуэктов 3 предложил косвенный каталитический метод определения рения, который основан на свойстве рениевой кислоты и ее солей каталитически ускорять восстановление теллурата натрия хлоридом олова (II) до элементарного теллура. При прочих равных условиях количество восстановленного теллура пропорционально концентрации рения, которую можно определить, измерив светопоглощение коллоидного раствора теллура, после введения в него защитного коллоида. Этим методом можно ч)нределять от 0,001 до 0,1 мпг рения с точностью 10—20%, Молибден мешает определению. Азотная кислота подавляет реакцию. Другие кислоты также влияют на интенсивность окраски. Доп. перев.  [c.380]

    Для растворения солей меди в щелочном растворе в нем должны присутствовать лиганды которые связывают ноны меди в комплекс С ионами меди образуют комплексы коны гидроксила тартрата оксалата карбоната аммиак глицерин трилон Б и неко торые др Комплексообразователи (лиганды) не только увеличивают растворимость солей меди в щелочной среде но и влияют на Процесс восстановления ионов меди Следовательно вещества образующие прочные комплексы с нонами медн увеличивают устой чивость растворов химического меднения Кроме того комплексо образователи влияют на скорость каталитического восстаноаления меди и на физические свойства получаемого покрытия тотность блеск цвет и т п В качестве комплексообразователей и блеско образующих веществ могут быть использованы также амино уксусные кислоты этиленаминоуксусные кислоты Самые распро [c.75]

    Этот метод ценен своей высокой чувствительностью. Рениевая кислота и ее соли каталитически ускоряют восстановление теллурата натрия до элементарного теллура хлоридом олова(П) При прочих равных условиях количество осадившегося теллура пропорционально концентрации рения. Если добавлен защитный коллоид, то теллур остается в растворе в коллоидном состоянии и концентрацию рения можно найти, определяя прозрачность коллоидного раствора, сравнивая- с аналогично приготовленными стандартами. Методом, описанным ниже, можно определить рений в количествах 0,001—0,1 у с точностью 10—20%. Молибден мешает определению и его следует предварительно отделить, если он присутствует в значительных количествах. Азотная кислота подавляет реакцию, другие кислоты также влияют на интенсивность окраски, однако в приводимом ниже методе влияние кислот устраняют тем, что стандарты готовят, добавляя рений к растворам анализируемого образца. [c.682]

    Влияние катализатора может сказываться не только на скорости окисления и длительности индукционного периода, но и на внутристадийном превращении одних продуктов окисления в другие, а также на характере конечных продуктов [101]. По некоторым данным, металлы катализируют окисление в основном в тех случаях, когда они образуют соли с кислотами. Чаще всего это происходит в присутствии воды и кислорода воздуха. Каталитическое действие металла прекращается, если он покрывается защитной пленкой, создаваемой продуктами окисления. Большая часть исследователей считает, что основную роль в катализирующем действии солей оказывает катион [96]. При этом, однако, соли одного и того же металла, но разных кислот могут обладать неодинаковой катализирующей активностью, т. е. активность солей может зависеть не только от катиона, но и от аниона. Анион может и не оказывать принципиального действия, а может влиять, например, на растворимость соли в масле и таким образом косвенно воздействовать на эффективность металлического катализатора. [c.77]

    Интересно отметить, что окись алюминия в миллион раз более чувствительна к воде, чем алюмосиликатные катализаторы. В связи с этим высказано предпвложение [40], что и алюмосиликаты обладают активными центрами различного типа, причем эти активные центры представляют собой кислоты типа не Льюиса (в отсутствие воды), а Бренстеда (с молекулой воды). На каталитическую активность природных катализаторов влияют также состав исходной породы и технология их активации кислотами. На активность синтетических алюмосиликатных катализаторов влияет много факторов, в том числе и уже описанные. [c.59]

    Присутствие в любых водных растворах ионов Н3О+ и ОН" существенно влияет на протекающие в них химические процессы. В основе многих химических реакций в водных растворах лежит переход протона от одних молекул или ионов к другим. Прежде всего — это реакции протолитической диссоциации кислот. К ним относятся также реакции гидролиза, когда взаимодействие воды с солью слабой кислоты и сильного основания придает раствору щелочную реакцию, а с солью сильной кислоты и слабого основания — кислую. Другим примером, где в реакции участвуют ионы Н+ или ОН", может служить реакция нейтрализации, на которой основано ацидиметрическое и алка-лиметрическое титрования, широко применяющиеся в объемном анализе. Во многих случаях ионы Н+ оказывают каталитическое действие на химические процессы (омыление эфиров, инверсия тростникового сахара и др.). [c.594]

    Легко образующиеся полимеры фосфорной кислоты подвергаются в водной среде каталитическому экзотермическому гидролизу, что сказывается на способности фосфора влиять на энергетику многих биопроцессов. [c.368]

    Вследствие равновесного характера эти реакции будут влиять друг на друга в соответствии со значениями констант равновесия. При очень высоком значении константы комплексообразования к мономера с кислотой полимеризация может вообще не идти. Для комплекса ИБ-А1Вгз константа к =620 см моль и полимеризация имеет место [194]. Связывание кислоты Льюиса в комплексный анион уменьшает концентрацию ее и замедляет инициирование. При достаточно высокой основности мономер может замещать кислоту Льюиса из сопряженного аниона. Вполне очевидно, что простое изменение концентрации мономера (исходной или в ходе реакции) также влияет на равновесие. Подобные взаимодействия свидетельствуют о важности самых различных факторов в инициировании полимеризации, в частности состава и порядка формирования каталитических систем, природы растворителя, температуры и т.д. [c.71]

    По-видимому, реакция протекает по механизму последовательного электрофильного замещения атомов водорода на хлор в ароматическом кольце. Добавление каталитических количеств серной кислоты в уксусную кислоту или использование трифторуксусной кислоты заметно ускоряет протекание реакции хлорирования. При эквимолярном соотношении исходных бензодиоксациклоалканов (78 или 79) и бутилгипохлорита (11) выходы моно- и дихлорзамещенных бензодиоксациклоалканов (83, 84) или (85, 86) составляют 80, 10% и 75, 12%, соответственно, при конверсии по субстрату 60-70%. При мольном соотношении исходных реагентов (78 или 79) (И), равном 2, конверсия по бензодиоксациклоалкану возрастает до 95-98%, а выходы моно- и дизамещенных продуктов (83, 84) или (85, 86) составляют 10, 82% и 9, 81%, соответственно. Замена бутилгипохлорита (И) на этилгипохлорит (9) мало влияет на селективность протекания реакции и выходы продуктов. [c.17]


Смотреть страницы где упоминается термин Кислоты каталитическое влия: [c.56]    [c.204]    [c.541]    [c.243]    [c.99]    [c.243]    [c.94]    [c.249]    [c.109]    [c.182]    [c.74]    [c.272]    [c.142]    [c.146]    [c.61]    [c.302]   
Электрохимия растворов издание второе (1966) -- [ c.21 ]




ПОИСК







© 2025 chem21.info Реклама на сайте