Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Излучение термическое

    В низкотемпературном пламени светильный газ-—воздух свободные атомы кальция практически не присутствуют, наблюдается излучение термически устойчивых радикалов СаОН в виде [c.42]

    Статистические флуктуации сигнала излучения Статистические флуктуации фонового излучения Термическая генерация носителей тока в отсутствие оптического сигнала [c.382]


    При теплообмене излучением термическое сопротивление [c.34]

    Преимущество фотохимического хлорирования по сравнению с термическим заключается в том, что при фотохимическом процессе в значительной степени предотвращаются как разложение сырья в результате пиролиза, так и реакции изомеризации. Реакция начинается практически мгновенно устраняется продолжительный индукционный период с накоплением хлора в реакционном объеме. Это может происходить и при жидкофазном хлорировании в подобных случаях реакция начинается бурно с внезапным выделением тепла и хлористого водорода, что в результате обильного пенообразования приводит к уносу продуктов реакции. Недостатком фотохимических процессов являются увеличенные капиталовложения и эксплуатационные расходы и высокая чувствительность к присутствию подавляющих реакцию примесей. Экономические преимущества фотохимического хлорирования объясняются высоким квантовым выходом. Принимают, что в условиях промышленных установок на каждый излученный световой квант вступает в реакцию около 100 молекул хлора. В зависимости от характера исходного углеводорода, концентрации хлора и температуры ртутная лампа мощностью 400 вт активирует протекание реакции 5—15 кг хлора в час. [c.142]

    Информацию о строении вещества получают на основании изучения его физических и химических свойств. Особую роль при изучении структуры играют исследования спектров поглощения и испускания, дифракции различных излучений, магнитных и электрических взаимодействий, механических, термических, электрических и других характеристик веществ. [c.140]

    М. Метод прерывистого освещения. Энергия активации, необходимая для инициирования так называемых термических реакций, приобретается разлагающейся молекулой в результате столкновений с другими молекулами. Однако реакции этого типа можно инициировать и при таких температурах, при которых их обычная ( термическая ) скорость очень мала. Энергия активации в подобных случаях получается за счет света (фотохимические реакции) и ионизирующих излучений (например, альфа-, бета-, гамма- или рентгеновских лучей) имеет место и сенсибилизация уже возбужденными молекулами (см. разд. V.43). [c.103]

    Распад инициаторов может происходить термическим и фотохимическим путем, под действием энергии высоких излучений (радиации), а также в результате взаимодействия компонентов окислительно-восстановительных систем. [c.134]


    Термическая диссоциация молекул происходит или в результате поглощения молекулами инфракрасного излучения, или же в результате столкновения молекул. Диссоциация молекул в [c.79]

    Для полной общности эта классификация должна быть дополнена случаями специфических (не термических) способов активации исходных молекул, т. е. фотохимическими и электрохимическими реакциями и реакциями под действием электроразряда п излучений. [c.272]

    Климат зависит не только от взаимодействия солнечного излучения с атмосферой. На него влияют также вращение Земли (вызывающее смену дня и ночи и влияющее на розу ветров), движение вокруг Солнца (вызывающее смену времен года), неравномерное распределение солнечной радиации по земной поверхности (влияющее на розу ветров) и различные термические свойства материалов поверхности Земли. В следующем разделе мы рассмотрим влияние последнего фактора. [c.400]

    Зарождение цеии требует энергии и может быть вызвано поглощением квантов света, особо благоприятными соударениями, термической диссоциацией, химическим взаимодействием молекулы с атомами или ионами (на поверхности стенок или в объеме сосуда), действием ионизирующих излучений и т. п. В некоторых случаях процесс зарождения цепей оказывается гетерогенным и протекает на стенках реакционного сосуда. Например, в реакции [c.351]

    Действие излучения на металлы состоит в нарушении их кристаллической решетки при упругих столкновениях с ядрами атомов тяжелых металлов и при термических преобразованиях, что приводит к изменению ряда свойств понижению пластичности и возрастанию сопротивления пластической деформации, росту электропроводности, ускорению процессов диффузии, инициированию фазовых превращений в металле. [c.369]

    Радиоактивное излучение. Радиоактивные изотопы используются для определения уровня фосфорита в шахтно-щелевых печах, для контроля за состоянием футеровки рудно-термических печей. [c.420]

    Теплообмен в рабочей камере футеровки дуговых электропечей осуществляется между всеми элементами термической системы материал—среда—футеровка . Теплота передается по всем перечисленным выше механизмам теплообмена. Тепловым излучением передается теплота от главного источника — столба горящей дуги, который представляет собой ионизированный газ печной среды, а также расплав шлака, т. е. жидкой фазы среды. В конвективном теплообмене участвует н газовая печная среда, образовавшаяся в зоне горения дуг и состоящая из паров металла, и твердая фаза (шлак, графит), и жидкая среда. [c.61]

    В газоразрядных лампах используется излучение положительного столба низкого давления или непосредственно, или путем последующего возбуждения флуоресценции ультрафиолетовым излучением (люминесцентные лампы). В натриевых и ртутных лампах в качестве источника света используется дуга с горячим катодом, которая зажигается в парах указанных элементов. Величина давления в лампе определяется ее рабочей температурой, поэтому вакуумный объем, в котором происходит разряд, термически изолируют, заключая лампу в еще один вакуумированный стеклянный баллон. Лампы работают на переменном токе, и поэтому каждый электрод снабжен термоэлектронным эмиттером электронов в виде слоя оксида. Зажигание и разогрев лампы происходят под воздействием высоковольтных импульсов, вырабатываемых при размыкании индуктивной цепи или при введении дополнительного газа (неона). [c.94]

    Помимо радиационно-химических эффектов, имеющих наибольший интерес в рассматриваемом аспекте, ионизирующие излучения могут вызвать и другие явления. Например, при электронно-лучевой обработке материалов [14] все эффекты классифицируют на термические и нетермические. Последние разделяют на следующие три группы  [c.109]

    Измельчение твердых тел может происходить в результате воздействия на них ударных волн в жидкости (электрогидравлический эффект) и ультразвуковой кавитации, а также при использовании твердых магнитных тел, возбуждаемых переменными магнитными полями. Принципиально можно дробить твердые тела, создавая термические напряжения пучками электромагнитного излучения СВЧ диапазона или лазерным лучом. [c.111]

    Интенсивность спектральной линии при постоянных условиях пропорциональна количеству введенных в пламя атомов элемента или концентрации соли металла в анализируемом растворе. Однако в реальных случаях эта зависимость может нарушаться вследствие протекания в пламени процессов самопоглощения, ионизации и образования термически устойчивых соединений. На рис. 1.13 представлена зависимость интенсивности спектральной линии от концентрации элемента в растворе. При средних содержаниях определяемого элемента в растворе эта зависимость линейна. Для больших содержаний сказывается влияние самопоглощения эмиссии атомов в плазме и в этом случае интенсивность излучения спектральной линии пропорциональна корню квадратному, из концентрации элемента в растворе. При очень низких концентрациях элемента и высокой температуре плазмы проявляется процесс ионизации его атомов и интенсивность излучения спектральной линии пропорциональна квадрату концентрации. В обоих случаях градуировочный график искривляется. Кроме процессов, указанных выше, на ход графика влияет ряд других факторов, поэтому определение элементов в методе фотометрии пламени проводят с использованием серии растворов сравнения. Они должны содержать все вещества, входящие в состав исследуемого раствора, и фотометрироваться в одинаковых с ним условиях. [c.37]


    Сходимость упоминавшейся выше процедуры не может быть достигнута посредством простой релаксационной схемы, поскольку недооценка А, может привести к переоценке Т, что в свою очередь дает завышенное значение hr, сопровождающееся занижением Т, без получения сходящихся результатов. Сходимость можно получить с помощью демпфирующего параметра d это значит, что в качестве нового значения Tj берут сумму двух величин, первая из которых равна произведению (1—a) и последнего значения искомой переменной, а вторая — произведению d и вновь найденного значения этой же переменной. В другом подходе можно попытаться составить термическую цепь (по-прежнему отличающуюся от радиационной цепи, используемой для получения коэффициента переноса излучения), в которой движущим потенциалом является вместо Т, и необходимо [c.512]

    Источниками теплоты в термической системе являются исходные материалы, пламя, раскаленная печная среда, полученные продукты, электрическая дуга, электронагреватели, внутренняя поверхность футеровки рабочей камеры и т. д. Приемниками теплоты являются исходные материалы, электроды, их держатели, внутренняя поверхность футеровки рабочей камеры, печная среда, вагонетки, решетки, подины и т. д. Источником или приемником теплоты в печах может быть любой элемент термической системы, а в многозонных печах туннельные, шахтные, вращающиеся и др.) один и тот же элемент при переходе из одной зоны в другую изменяет свои термические функции источник теплоты становится приемником или наоборот, а также меняется вид теплообм1ена (или доля), в котором участвует элемент системы (например, газовая печная среда из теплообмена излучением в зоне нагрева переходит на конвективный теплообмен в зоне подогрева и т. д.). [c.61]

    Ценными сЕюйствами обладает кварц. Изделия из кварцевого стекла выдерживают нагревание до 1200 С и пропускают ультрафиолетовое излучение. Благодаря ничтожно малому коэффициенту термического расширения кварца изделия не растрескиваются даже если их нагреть до красного каления и затем опустить в холодную воду. Кварцевая аппаратура теперь обычна в лабораториях и на производстве. Сверхчистый кварц применяют для изготовления волоконной оптики и устройств для глубокой очистки веществ. [c.377]

    Термическое разложение ацетона происходит при 578 К на 25% за 90,9 с, п эи 601 К — за 31 с. Фотохимическое разложение осущест-вляетгя при длине волны 313 нм с квантовым выходом 7 = 2. Рассчитайте константу скорости мономолекулярного термического разложения ацетона, энергию активации этого процесса и расход энергии электромагнитного излучения (Дж/моль) в фотохимическом процессе. Будет ли сбщий расход энергии электромагнитного излучения соот-ветспювать вычисленному  [c.395]

    Величину / можЕЮ назвать фактором возбуждения. Эта величина является сложной функцией условий возбуждения и в каждом отдельном случае может быть определена оиытным нутел . Исключение здесь представляет лишь случай термического или равновесного излучения, где соотношение между концентрациями лозбуждепных н невозбужденных молекул задано больцма-по в ским р аси р еде л е н и е м. [c.25]

    Свечение пламени вызывается в основном термическим излучением, происходящим в результате теплового возбуждения зтомов, и в меньшей степени химическим излучением (люминесценция). Интенсивность термического излучения зависит от способности излучающих веществ поглощать свет. [c.124]

    Фотометрия пламени — вид эмиссионного спектрального анализа, в котором источниками возбул<дения спектров являются пламена различных видов ацетилен — воздух, ацетилен — кислород, пропан — воздух, пропан — кислород, водород — воздух и др. Вследствие невысокой температуры в пламенах излучают легко и среднеионизующиеся элементы щелочные и щелочноземельные металлы, галлий, индий, магний, марганец, кобальт, медь, серебро и ряд других, причем их число растет с увеличением температуры пламени. В наиболее холодных пламенах, таких как, например, пропан — воздух, светильный газ — воздух излучают только атомы щелочных и щелочноземельных металлов. Вследствие невысокой температуры спектры, излучае-МЕле пламенами, состоят из небольшого числа спектральных линий, главным образом резонансных, что позволяет выделять характеристическое излучение элементов при помощи светофильтров и использовать простые и имеющие невысокую стоимость спектральные приборы — пламенные фотометры. Кроме атомных спектральных линий в спектрах пламен присутствуют полосы ряда в основном двухатомных молекул и радикалов С2, СиС1, СаОН и др. Некоторые из них используют в аналитических целях. Так, в случае элементов, образующих термически устойчивые оксиды, которые практически не диссоциируют в пламенах с образованием свободных атомов, молекулярные спектры являются единственным источником аналитического сигнала. Практически не атомизируются в низкотемпературных пламенах оксиды скандия, титана, лантана и других элементов, ирлеющих относительно невысокие потенциалы ионизации. Наиболее часто фотометрию пламени применяют для определения щелочных и щелочноземельных металлов. [c.35]

    При постоянной толщине поглощающего слоя градуировочный график, построенный в координатах А—с, представляет собой прямую, проходящую через нулевую точку. Так как подавляющее большинство свободных атомов находится в основном состоянии, то значения атомных коэффициентов абсорбции для элементов очень высоки и достигают и-10 , что примерно на три порядка выше молярных коэффициентов поглощения светового излучения, полученных для растворов (е = п-10 ). Это в известной степени обусловливает низкие абсолютные и относительные пределы обнаружения элементов атомно-абсорбционным методом первые составляют 10 —Ю г, вторые —10 —10 %. Для атомизации вещества в атомно-абсорбционной спектрофотометрни используют пламена различных типов и электротермические атомизаторы. Последние основаны на получении поглощающего слоя свободных атомов элемента путем импульсного термического испарения вещества кювета Львова, графитовый трубчатый атомизатор, лазерный испаритель и др. Пламенная атомизация вещества получила большое распространение в аналитической практике, так как она обеспечивает достаточно низкие пределы обнаружения элементов (10 — 10 %) и хорошую воспроизводимость результатов анализа (1—2%) при достаточно высокой скорости определений и небольшой трудоемкости. Для наиболее доступных низкотемпературных пламен число элементов, определяемых методом атомно-абсорбционной спектрофотометрни, значительно больше, чем [c.48]

    Максимальный тепловой поток при радиационном теплообмене реализуется о том случае, если участвуюп ие в энергообмене тела имеют термически черные поверхности. Если теплообмен излучением осуществляется без потерь в окружаюш,ее пространство, то плотность теплового потока определяется законом Стефана—Больцмана [c.72]

    С. Пропускание пограничного слоя. В 2.9.7 рассмат-)ивается радиационный перенос в неизотермическом газе. Тлотность потока падающего излучения на холодной стенке, обращенной к горячему газу, меньше в том случае, когда имеется холодный пограничный слой, вследствие того, что не весь путь падающего луча проходит через области с высокой температурой. Проводя анализ термически развивающегося течения поглощающего и излучающего молекулярного газа на входе в канал, образо- [c.496]

    Р. Оболенцев и соавторы, поставившие своей задачей создание автоматического самопишущего прибора, в первой стадии работы проверяли возможности метода Юза и Вильчевского с тем, чтобы в дальнейшем перейти к основной задаче — созданию прибора-автомата. В качестве источника излучения авторы использовали изотоп Ге , полученный нейтронным облучением обыкновенного железа в виде окиси ГегО . Излучение Ге является настолько мягким, что оно в большой мере поглощается в слое самого препарата. Толщина слоя ГегОд, излучение которого в направлении, перпендикулярном к слою, вдвое ослаблено в результате такого самопоглощения, очень мала и составляет всего лишь 50 ц,. Поэтому авторы применяли источники, полученные нанесением на алюминиевый диск суспензии ГегОд в клее БФ-2 (разбавленном спиртом), при этом толщина слоя после высыхания не превышала 30—40 [А. После термической полимеризации БФ-2 слой препарата покрывали тонким ( 50 ц) защитным слоем чистого клея БФ-2, который также полимеризовался. Источник диаметром 20 лш имел активность 0,2—0,5 мкюри или менее 0,02—0,04 мг-экв радия. Такая малая активность источника обеспечивает достаточную безопасность работы с пим. [c.424]


Смотреть страницы где упоминается термин Излучение термическое: [c.166]    [c.544]    [c.307]    [c.91]    [c.30]    [c.92]    [c.202]    [c.288]    [c.201]    [c.31]    [c.224]    [c.38]    [c.38]    [c.511]    [c.171]   
Электрические явления в газах и вакууме (1950) -- [ c.319 , c.320 ]




ПОИСК







© 2025 chem21.info Реклама на сайте