Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Гистерезис механический

Рис. 83. Механический гистерезис у полимеров Рис. 83. <a href="/info/620623">Механический гистерезис</a> у полимеров

    Площадь, ограниченная петлей гистерезиса, представляет собой разность между работой, затраченной при растяжении образца. Ах и работой, полученной при разгрузке Ла. Определяют коэффициент механических потерь ч по следующей формуле  [c.167]

    Площадь петли гистерезиса — это разность между удельной работой, затраченной при нагружении и полученной при разгрузке образца. Чем больше площадь петли гистерезиса, тем больше потери механической энергии. Эта энергия превращается в тепло и частично может затрачиваться на активацию сопутствующих химических процессов. [c.149]

    Кроме обратимых упругих деформаций и необратимых деформаций пластического и вязкого течения, реальные твердые тела характеризуются процессами упругого последействия и гистерезиса ( упругих задержек ), т. е. замедленной упругости. В отличие от идеально упругой деформации, которая развивается и медленно спадает со скоростью распространения звука в данном теле, упругое последействие, или медленная эластичность, представляет собой дополнительную деформацию, медленно развивающуюся после разрушения и также медленно спадающую после разгрузки (рис. 3). Такая деформация обратима механически (по величине) и в этом [c.11]

    Усталостная характеристика износа резин, связанная с потерями на гистерезис, была впервые введена Крагельским [13.5], что особенно важно при трении резин по шероховатым поверхностям. Кроме износа, связанного с механическими свойствами поверхностей полимера и металла, им был рассмотрен износ, приводящий к механохимической деструкции контактирующих поверхностей. [c.380]

    ГИСТЕРЕЗИС МЕХАНИЧЕСКИЙ, (в полимерах) — отставание дефор.мации по фазе (т. е. во времени) от напряжения при циклич. деформациях, [c.474]

    Цель работы. Получение зависимости напряжение — деформация для высокоэластичных полимеров в режиме нагрузка — разгрузка (петли гистерезиса), расчет коэффициента механических потерь. [c.166]

    На рис. 9.11 показан ряд последовательных циклов деформации одного и того же образца. Видно, что площадь петли гистерезиса (механические потери) уменьшается от цикла к циклу, в конечном счете достигает предельной величины и далее практически не изменяется. [c.128]

    Выражением релаксационного характера механических свойств полимеров являются гакие широко известные факты как трудность достижения равновесного значения высокоэластической деформации, медленное увеличение деформации при постоянной нагрузке (ползучесть), убывание напряжения со временем в деформированном образце (релаксация напряжения), различие в напряжении при одной и той же величине деформации в случае нагружения и в случае разгружения (механический гистерезис и связанные с ним тепловые потери), отставание при периодическом деформировании деформации от напряжения и, как следствие этого, существование так называемого тангенса угла механических потерь. [c.41]


    Гистерезис механический — несовпадение зависимостей напряжение — деформация при неравновесном режиме нагружения и разгружения, имеющее следствием необратимое рассеяние энергии. [c.561]

    РЕЛАКСАЦИЯ механическая в полимерах — изменение напряженного состояния полимера при переходе от неравновесного расположения элементов его структуры (цепных макромолекул, пачек макромолекул, микрокристаллов и т. д.) к равновесному. Р. вызывается механич. воздействиями и, в зависимости от их режима, развивается по тому или иному пути. Простейшие формы Р. в полимерах Р. напряжения — убывание напряжения со временем при поддержании постоянной величины деформации (например, сдвига, одноосного растяжения или сжатия), Р. деформации (ползучесть, упругое последействие) — возрастание деформации при непрерывном и постоянном по (Величине механич. напряжении или убывание ранее развившейся деформации после снятия внешнего напряжения гистерезис механический. Скорость Р., определяемая, в конечном счете, скоростью молекулярных перегруппировок, резко зависит от темп-ры. Мерой скорости Р. является время, в течение к-рого отклонение от равновесия уменьшается в е раз но сравнению с начальным значением. Р. механическая в полимерах — сложный процесс, к-рый условно можно расчленить на ряд простых процессов, вследствие чего приходится иметь дело не с одним временем Р., а с широким набором (спектром) времен. Если известен набор времен Р. напряжения, то при небольших деформациях и напряжениях, в принципе, могут быть рассчитаны как времена Р. деформации, наз. временами запаздывания, так и скорости релаксационных процессов для любых других режимов деформации. [c.319]

    Высокие упругие свойства не сильно сшитого каучука в обшем почти не зависят от скорости нагружения. Явления, связанные с рассеянием энергии механической деформации (релаксация напряжений, гистерезис, механические затухания), играют здесь лишь подчиненную [c.578]

    Наконец, можно подумать, что гистерезис механических характеристик легких, заполняемых воздухом, также связан с поверхностными явлениями, поскольку этот эффект слабее проявляется при заполнении легких водным раствором. [c.208]

    В последнее время особое внимание уделяется изучению структурных факторов, влияющих на усталостную прочность, механические потери (гистерезис) и теплообразование полиуретанов [65, 66]. [c.545]

    В действительности замедленное, но непрерывное снижение О наблюдается в течение всего срока службы мембраны, который и определяется именно этим показателем, но не механической прочностью мембраны. Анализ полученных данных [153] показал, что в качестве критерия, характеризующего вязкоэластичные свойства мембраны, а следовательно, и срок ее службы, можно принять площадь петли гистерезиса (рис. 1У-5, а, б), описываемой кривой С = 1(Р) при последовательном увеличении Р от нуля до некоторого значения, а затем изменение давления в обратной последовательности. [c.177]

    Таким образом, теория механического равновесия трехфазного контакта с учетом х получила разнообразное экспериментальное подтверждение в наиболее удобном для экспериментирования случае ньютоновская пленка/объемная жидкость/воздух, когда трехфазный контакт предельно равновесен, т. е. гистерезис отсутствует. [c.267]

    Релаксационные явления имеют место при воздействии на полимер механических и электрических полей, при растворении, набухании и кристаллизации. Особенно большое значение имеют механические релаксационные процессы, в частности ползучесть и упругий гистерезис. [c.26]

    Синтетические пены с дешевыми неорганическими пигментами имеют по сравнению с резиновыми пенами на основе только натурального каучука следующие преимущества повышенная стойкость к старению, высокое сопротивление многократному изгибу, незначительная остаточная деформация после сжимающих нагрузок и хорошие эластичность и гистерезис. Хотя их механическая прочность несколько ниже, она все же вполне достаточна для применения, например, в качестве обивки сидения и амортизирующих устройств. По низкотемпературным показателям они также уступают пенам на основе натурального каучука, но все же дают удовлетворительные результаты практически при любых условиях эксплуатации и оказываются значительно лучше, чем эластомерные пены других вырабатываемых в настоящее время типов. Важными преимуществами чисто синтетических пен являются стабильность цен и большее постоянство технологических характеристик. [c.213]

    Таким образом, прн растяжении полимера в неравновесных условиях наблюда тся явление механического гистерезиса, проявляющегося в отставании деформации от напряжения. [c.291]

    Раньше считалось, что гистерезис краевого угла вызван только неровностями поверхности или ее химической неоднородностью—наличием участков с разными равновесными краевыми углами. Рассмотрение механической устойчивости переходной зоны показало, что гистерезис возможен и на гладкой однородной поверхности. При этом значения 0д и 0 могут быть также определены на основании изотерм расклинивающего давления П(Л)[55б]. Для изотерм типа 1 на рис. 13.3 значения 0л лежат между 0о и 90°, а значения 0д близки к О, так как краевой угол образуется с метастабильной -пленкой, формирующейся за отступающим мениском. > [c.221]


    Механическая энергия, затраченная на деформацию, частично возвращается при разгрузке образца благодаря обратимости деформации. Потеря возвращенной упругой энергии, по сравнению с затраченной механической, объясняется необратимым рассеянием ее в виде тепловой энергии вследствие процессов внутреннего трения в материале — гистерезисом. При повторных деформациях потери энергии уменьшаются и устанавливаются практически постоянными, поскольку структурные изменения, происходящие в резине при однозначных повторяющихся деформациях, стабилизируются. [c.131]

    Выше уже указывалось, что при рассмотрении упругих характеристик твердого тела предполагается, что напряжение I (т) в момент времени т определяется деформацией ст (т) в тот же момент времени, а следовательно, делается предположение о квазистатическом характере упругого деформирования, т. е. (т) = 00 (т), где Ео — статический модуль упругости (для данного типа деформации) идеально упругого тела. Тем самым считается, что при периодическом деформировании напряжение t находится в одной фазе с деформацией ст. Однако для реальных кристаллов это не так состояние равновесия не успевает установиться, и имеют место диссипативные процессы. В настоящее время для кристаллических материалов известно много механизмов рассеяния энергии, среди которых следует отметить релаксационные потери, связанные с наличием тех или иных структурных дефектов, вязкое затухание, обусловленное наличием вязкости и теплопроводности в анизотропном твердом теле, потери, связанные с необратимыми явлениями (механический гистерезис) и резонансное затухание, которое обязано тому, что реальные тела являются колебательными системами с большим числом степеней свободы. [c.139]

    Деформация конденсированных полимерных систем, находящихся в вязкотекучем состоянии, может сопровождаться изменением состояния их надмолекулярных структур. Это явление наблюдается при переходе через предел сдвиговой прочности. Ему должна сопутствовать тиксотропия свойств вещества. Однако для конденсированных полимерных систем неизвестно, в каких масгптабах времени могут фиксироваться протекающие в них тиксо-тропные изменения. Переход через предел сдвиговой прочности, сопровождаемый разрушением структуры вещества, ранее был наиболее широко изучен на примере двухфазных конденсированных систем [1, 2]. Однако по отношению к конденсированным полимерным системам в вязкотекучем состоянии явление тиксотропии и гистерезис механических свойств не наблюдали даже в тех случаях, когда замечались интенсивные необратимые изменения [3]. Лишь Кепе [4] указывал на возможность существования у полимеров тиксотропии. [c.323]

    Рассуждения о постепенном уменьшении во времени гистерезиса температур застудневания и плавления студней и гистерезиса механических свойств (в частно-си, модуля упругости) справедливы при условии, что застудневание ие сопровождается какими-либо другими процессами, например фазовыми превращениями полимера (кристаллизацией) или изменением его химического состава. Если для ацетата целлюлозы в бензиловом спирте эти вторичные процессы вряд ли протекают в существенной степени, то для других полимеров они могут исказить картину и вызвать действительный гистерезис. Так обстоит дело, например, с некоторыми белками и углеводами, а также с отдельными синтетическими полимерами. Что касается химических изменений, то они происходят, например, в растворах ксантогената целлюлозы. Эти вопросы следует рассмотреть отдельно в соответствующих главах книги. [c.118]

    Термины гиксостабильность, тиксотропия, тиксолабильность и реопексия заимствованы из коллоидной химии. Все эти свойства впервые наблюдались у коллоидных растворов и суспензий. Аналогичные явления имеют место в металлах и других технических твердых телах. Например, существует много общего между упрочнением металлов при деформации и реопексией или между так называемым гистерезисом механических свойств и тиксо-тропией. Однако представляется более правильным в области реологии нефтепродуктов сохранить коллоидно-химическую терминологию. По своим механическим свойствам нефтепродукты значительно ближе к гелям, золям и суспензиям, чем к твердым телам, а некоторые из них являются типичными дисперсными системами. [c.48]

    В качестве электрофизических параметров в математических моделях обычно выступают коэрцитивная сила Яс, удельное электрическое сопротивление р, относительная магнитная проницаемость остаточная индукция Вт, намагниченность насьшхения Мз и другие параметры. Но для измерения совокупности этих параметров необходимо применение разнообразных приборов, установок и датчиков, что делает практически невозможным использование многопараметровой модели для экспресс-оценки технического состояния оборудования в производственных условиях. По-пьпка контроля механических напряжений по одному электрофизическому параметру, а также наличие магнитомеханического гистерезиса и специфического напряженного состоягшя верхнего тонкого слоя металла приводят к высоким значениям погрешностей. Поэтому важной задачей элек- [c.210]

    Существует целый ряд теорий, преследующих цель объяснить вышеуказанное явление. Но авторы настоящего труда считают излишним рассматривать их в этом месте. Общее мнение сводится, очевидно, к тому, что в действительности гистерезис представляет собой явление механического свойства. Наблюдаемое при адсорбции разбухание не связано целиком с десорбцией, вследствие чего водяному пару открыт доступ к более значительной площади поверхности. Баркас (см. ссылку 186) объясняет это обстоятельство с точки зрения термодинамики. В своих рассуждениях он прибегает к обосноваийям, на которых построены известный цикл Карно и другие циклические процессы. [c.216]

    Результаты исследований показывают, что при пластовой температуре структурно-механические свойства девонской нефтн проявляются слабо. Они усиливаются с понижением температуры нефти. Это является причиной интенсивного роста вязкости и снижения подвижности нефти. При температуре 25° С подвижность нефти оказывается особенно низкой. Здесь также отмечается гистерезис подвижности даже при градиентах давления выше 0,1 кгс/см 2, м. Это обусловлено влиянием парафинов на фильтрацию нефти. [c.10]

    В случае гладкой поверхности появление волн отделения приводит к износу полимера посредством скатывания его поверхностного слоя, тогда как в случае шероховатой поверхности имеет место преимущественно абразивный износ [13.5]. В случае гистере-зисного механизма внешнего трения (т. е. при наличии механических потерь) при деформации шероховатостей наблюдается усталостный износ полимеров. Следует отметить, что последний вид износа не является интенсивным как абразивный и изделие из полимера сохраняет работоспособность в течение длительного времени. Абразивный износ является весьма интенсивным, и полимер быстро теряет свою работоспособность. Когда полимер перемещается по грубой шероховатой поверхности, то адгезия и гистерезис приводят соответственно к абразивному и усталостному износу. Для эластомеров с повышенными твердостью и сопротивлением раздиру волны отделения и износ посредством скатывания не имеют места. На температурных и временных зависимостях максимумы силы трения соответствуют минимумам износа (или истирания) полимеров. [c.362]

    Работа сокращения графически может быть выражена площадьк> под кривой 3. Как видно, при растяжении затрачиваетсй большая работа, чем ее получают при сокращении. Это значит, что в цикле растяжение — сокращение мы теряем работу, измеряемую площадью петли, образованной кривыми растяжения и сокращения. Петля эта называется петлей гистерезиса, а само явление несовпадения кривых растяжений и сокращения называется гистерезисом или точнее механическим гистерезисом. [c.127]

    Если на полимер действует переменное напряжение, т. е. сначала оно возрастает, а затем падает, то изменения деформации будут отставать от изменения напряжения как при его возрастании, так и ири уменьшении. Это приводит к хорошо известному явлению механического гистерезиса в полимерах, гра- фически изображенному на рис. 83. Чем больше разница в скоростях релаксационных процессов при возрастании и уменьшении напряжения, тем больше площадь петли гистерезиса. Площадь петли характеризует энергию, рассеиваемую в полимере при циклическом нагружеиш и приводящую к его нагреву. [c.251]

    В металлических электроосажденных слоях а влияют как на механические (твердость НУ), так и на магнитные свойства, например на коэрцитивную силу (рис. 34). В интервале концентраций N1 (ЫН280з)2-4На0 100—800 г/л максимальная магнитная индукция 5т — несколько уменьшается, а прямоугольность петли гистерезиса 8 1(8 — Н) увеличивается большие значения этих параметров получены при 4 = 60° С. На кривых Не — (с) выявлен максимум независимо от температуры электролита при концентрации основного компонента 350—650 г/л. Подобные зависимости получены для никелевых покрытий, осажденных при плотности тока 10 А/дм . [c.81]

    Зачастую при рассмотрении таких переходов линия равновесия формально рассматривается как линия равенств химических потенциалов ([х(р, Т)) обеих фаз. При этом чаще всего игнорируются условия механического равновесия фазовой границы и то, что функция р, (р, Т) в области метастабильности (а эта область обязана существовать, поскольку фазовые переходы I рода могут реализовываться только через процесс образования зародыша новой фазы) не определена и ее нельзя рассматривать как аналитическое продолжение функции из области стабильности, отвечающей полностью равновесному состоянию вещества [13]. В данном случае образование зародыша конечных размеров, а следовательно, необходимость учета межфазной энергии и возникающих упругих полей в системе существенно меняют условия равновесия в системе, так что каждому метастабильному состоянию отвечает равновесие с зародышем новой фазы определенных размеров. При этом упругое поле, возникающее из-за контакта фаз с различными деформациями и мольными объемами, при определенных условиях оказывается пропорциональной не площади поверхности контакта, а объему фаз [25]. С учетом возникающей из-за гистерезиса необратимости процессов (понятие линии равновесия в известной мере теряет смысл) и невозможности трактовки термодинамического описания как предельного случая кинетического подхода при бесконечно малом отклонении системы от равновесия, становится понятна ограниченность расчетов по термодинамическим функциям без учета деформации и зародышеобразования. Эти трудности будут подробнее обсуждены в рамках развитого в работах А. Л. Ройтбурда, Б. Я- Любова и др. [27] представления о фазовом переходе как стохастическом процессе (характеризуемом параметром перехода ф), в ходе которого система эволюционирует через цепь метастабильных состояний. Для этого рассмотрим переход графит—алмаз с учетом упругих полей деформаций без конкретизации механизма такого превращения, поскольку имеющихся в настоящее время экспериментальных данных для этого недостаточно. [c.304]


Смотреть страницы где упоминается термин Гистерезис механический: [c.576]    [c.221]    [c.203]    [c.291]    [c.292]    [c.292]    [c.293]    [c.296]    [c.300]    [c.427]    [c.221]    [c.27]   
Химия и технология полимерных плёнок 1965 (1965) -- [ c.137 ]




ПОИСК





Смотрите так же термины и статьи:

Гистерезис

Гистерезис механический полимерах

Гистерезис механический сорбционный

Диффузия гистерезис механический



© 2025 chem21.info Реклама на сайте