Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Гистерезис необратимый

    Наряду с обратимыми эффектами, соответствующими явлению аномалии вязкости, для загущенных масел и для парафинистых масел при низких температурах в результате их деформирования характерны необратимые явления. Под действием больших гидродинамических усилий происходит деструкция— разрыв молекул полимера, а в парафинистых маслах — разрушение или дезагрегирование кристаллитов твердых углеводородов. В этом случае при переходе от высоких скоростей течения к меньшим увеличение (восстановление) вязкости масел будет неполным. Такое явление называют гистерезисом вязкости. Оно определяется тем, что после деформирования с достаточно высокой скоростью сдвига получается новая система, отличная от исходной, не подвергавшейся деформации. В отдельных случаях систему можно вернуть в исходное состояние, например нагреть масло и вновь его охладить. [c.270]


    Структура торфа весьма чувствительна к различного рода физическим и физико-химическим воздействиям, что вызывает соответствующее изменение его гидрофильных и водных свойств. Наиболее существенно эти параметры изменяются при обезвоживании, когда в процессе дегидратации торфа усиливаются меж- и внутримолекулярные взаимодействия через поливалентные катионы, содержание которых в торфе достигает 2 мг-экв/г с. в. (грамм сухого вещества), или посредством водородных связей. В определенных условиях ковалентные или ионные взаимодействия переходят в комплексные гетерополярные, вследствие чего при обезвоживании и интенсивной усадке в надмолекулярных образованиях торфа протекают необратимые процессы. Изменение водных свойств торфа при высушивании до низкого влагосодержания наглядно проявляется в явлении гистерезиса на графиках сорбции — десорбции воды, изменяются также его диэлектрические свойства при высушивании — увлажнении [215] и водопоглощение при различной степени осушения пахотного горизонта торфяной почвы [216]. [c.66]

    Установлено явление гистерезиса диэлектрической проницаемости, указывающее на необратимые изменения, происходящие в пеке при нагреве и охлаждении. [c.190]

    При помощи кривых заряжения можно установить степень обратимости процессов, протекающих при пропускании тока через систему. Так, если изменить направление тока в какой-либо точке водородной или двойнослойной области, то полученная затем катодная кривая почти полностью повторит соответствующую анодную кривую заряжения. Однако при обращении тока в кислородной области наблюдается значительный гистерезис между анодной и катодной кривыми (см. рис. 36), петля которо-К/ го расширяется при сдвиге потенциала в анодную сторону. Это указывает на необратимый характер процессов адсорбции и десорбции кислорода. [c.64]

    СИТ название петли гистерезиса (отставания),Изменение индукции при перемагничивании материала идет термодинамически необратимо за один цикл перемагничивания затрачивается энергия, количество которой пропорционально площади петли гистерезиса. Кроме потерь на гистерезис при действии на материал переменного магнитного поля, в нем появляются вихревые токи, на создание которых потеря энергии тем больше, чем меньше удельное сопротивление материала. [c.349]

    Кроме обратимых упругих деформаций и необратимых деформаций пластического и вязкого течения, реальные твердые тела характеризуются процессами упругого последействия и гистерезиса ( упругих задержек ), т. е. замедленной упругости. В отличие от идеально упругой деформации, которая развивается и медленно спадает со скоростью распространения звука в данном теле, упругое последействие, или медленная эластичность, представляет собой дополнительную деформацию, медленно развивающуюся после разрушения и также медленно спадающую после разгрузки (рис. 3). Такая деформация обратима механически (по величине) и в этом [c.11]


    Оба эти типа процессов могут быть обратимыми и необратимыми, в зависимости от того, большая или малая доля энергии при данном процессе рассеивается в виде тепла. Второй тип процессов определяет собой все явления магнитного гистерезиса (см. рис. 125). [c.322]

    Описание коллекторских свойств пласта включает в себя, кроме учета площадной неоднородности и изменчивости свойств коллектора по сечению, направленные относительные проницаемости для отдельных областей пласта и в целом по залежи, сжимаемость пород, т.е. разрушение поровых каналов при изменении давления, причем процесс может быть обратимым, необратимым и с гистерезисом. Для каждой точки пласта могут быть определены данные по насыщенности для каждого типа породы. [c.180]

    Исходные данные для рассматриваемой адсорбционной системы содержатся в табл. 2. Они вычислены для всех трех методов по приведенным выше уравнениям, параметры которых и интервалы применимости указаны в табл. 1. После вычисления интеграла во втором члене уравнения (7) расчетные формулы (I)—(XI). приобретают окончательный вид, приведенный в Приложении (в этих формулах толщины адсорбционных слоев и радиусы пор выражены в А). Нижняя граница вычислений по всем методам соответствовала радиусу пор А, т. е. нижней границе мезопор. Точке начала необратимого гистерезиса отвечает относительное давление - 0,42. Соответствующие радиусы пор, из которых происходит капиллярное испарение, значительно различаются по данным рассматриваемых методов, как, впрочем, радиусы и для других давлений. Естественно, что для таких условий нельзя сравнивать как оцениваемые объемы мезопор, так и их удельные поверхности для эквивалентных модельных сорбентов. [c.110]

    Благодаря химической модификации поверхности капилляров, ЭОП может контролироваться, исключаться или даже обращаться. Определение значения ЭОП служит единственной возможностью определить изменения на поверхности капилляров, например, благодаря необратимой адсорбции компонентов пробы. Все другие методы характеристики поверхности капилляров исключаются при очень небольших поверхностях (1 см ). Поверхностно-модифицированные капилляры не проявляют явлений гистерезиса при смене буферов и из-за незначительной адсорбции очень хорошо подходят для анализа белков (см. ниже). [c.12]

    При обратном титровании кислотой наблюдался гистерезис, указывающий, что гидролиз в какой-то степени имеет необратимый характер, а среди его продуктов находятся полимеры. Это явление не учитывалось при расчете констант реакций (6) и (7), которые приведены в табл. 7. [c.36]

    Механическая энергия, затраченная на деформацию, частично возвращается при разгрузке образца благодаря обратимости деформации. Потеря возвращенной упругой энергии, по сравнению с затраченной механической, объясняется необратимым рассеянием ее в виде тепловой энергии вследствие процессов внутреннего трения в материале — гистерезисом. При повторных деформациях потери энергии уменьшаются и устанавливаются практически постоянными, поскольку структурные изменения, происходящие в резине при однозначных повторяющихся деформациях, стабилизируются. [c.131]

    Ряд катионообменных форм цеолита X был изучен методами термогравиметрии, ДТА и по равновесной адсорбции воды. Для некоторых катионных форм при адсорбции наблюдается гистерезис или же адсорбция имеет необратимый характер, как в случае стронциевой формы цеолита X [2, 26]. [c.467]

    Выше уже указывалось, что при рассмотрении упругих характеристик твердого тела предполагается, что напряжение I (т) в момент времени т определяется деформацией ст (т) в тот же момент времени, а следовательно, делается предположение о квазистатическом характере упругого деформирования, т. е. (т) = 00 (т), где Ео — статический модуль упругости (для данного типа деформации) идеально упругого тела. Тем самым считается, что при периодическом деформировании напряжение t находится в одной фазе с деформацией ст. Однако для реальных кристаллов это не так состояние равновесия не успевает установиться, и имеют место диссипативные процессы. В настоящее время для кристаллических материалов известно много механизмов рассеяния энергии, среди которых следует отметить релаксационные потери, связанные с наличием тех или иных структурных дефектов, вязкое затухание, обусловленное наличием вязкости и теплопроводности в анизотропном твердом теле, потери, связанные с необратимыми явлениями (механический гистерезис) и резонансное затухание, которое обязано тому, что реальные тела являются колебательными системами с большим числом степеней свободы. [c.139]

    Этот гистерезис, очевидно, является следствием необратимого изменения состояния поверхности раздела электрод — электролит. Тепловой энергии кТ при температуре опыта недостаточно, чтобы сообщить энергию активации для достижения прежнего состояния. Лишь в том случае, когда благодаря созданию на поверхности раздела электрической разности потенциалов настолько изменится энергетическое положение двойного слоя, что тепловой энергии будет достаточно для изменения состояния поверхности раздела, установится прежнее стабильное состояние. [c.278]


    Коэффициент затухания 8 характеризует ослабление волны вследствие необратимых потерь при ее распространении в среде (см. разд. 1.1.1). Коэффициент затухания складывается из коэффициента поглощения и коэффициента рассеяния. 6 = 5п + 5р. При поглощении акустическая энергия переходит в тепловую в результате действия теплопроводности (отвод энергии от элементарного объема, испытывающего расширение и сжатие), упругого гистерезиса (зависимость напряжение -деформация описывается разными кривыми при расширении и сжатии) и вязкости (в жидкости). При рассеянии энергия остается акустической, но уходит из направ-ленно-распространяющейся волны. Поскольку [c.32]

    Для адсорбции азота при Г = 77 К константа с близка к 100. В этом случае по (2) 0,09. Точка начала необратимого гистерезиса при сорбции азота соответствует hf, да 0,45. В этом случае имеется достаточный интервал h для протекания полимолекулярной адсорбции, не осложненной капиллярной конденсацией. Для адсорбции ССЦ при Т = 293 К с да 4. Согласно (2), да 0,33 при /ip да 0,25 для активных углей. В этом случае формально монослой образуется в необратимой области гистерезиса изотермы сорбции и определение становится ненадежным. По теории БЭТ [c.87]

    Зачастую при рассмотрении таких переходов линия равновесия формально рассматривается как линия равенств химических потенциалов ([х(р, Т)) обеих фаз. При этом чаще всего игнорируются условия механического равновесия фазовой границы и то, что функция р, (р, Т) в области метастабильности (а эта область обязана существовать, поскольку фазовые переходы I рода могут реализовываться только через процесс образования зародыша новой фазы) не определена и ее нельзя рассматривать как аналитическое продолжение функции из области стабильности, отвечающей полностью равновесному состоянию вещества [13]. В данном случае образование зародыша конечных размеров, а следовательно, необходимость учета межфазной энергии и возникающих упругих полей в системе существенно меняют условия равновесия в системе, так что каждому метастабильному состоянию отвечает равновесие с зародышем новой фазы определенных размеров. При этом упругое поле, возникающее из-за контакта фаз с различными деформациями и мольными объемами, при определенных условиях оказывается пропорциональной не площади поверхности контакта, а объему фаз [25]. С учетом возникающей из-за гистерезиса необратимости процессов (понятие линии равновесия в известной мере теряет смысл) и невозможности трактовки термодинамического описания как предельного случая кинетического подхода при бесконечно малом отклонении системы от равновесия, становится понятна ограниченность расчетов по термодинамическим функциям без учета деформации и зародышеобразования. Эти трудности будут подробнее обсуждены в рамках развитого в работах А. Л. Ройтбурда, Б. Я- Любова и др. [27] представления о фазовом переходе как стохастическом процессе (характеризуемом параметром перехода ф), в ходе которого система эволюционирует через цепь метастабильных состояний. Для этого рассмотрим переход графит—алмаз с учетом упругих полей деформаций без конкретизации механизма такого превращения, поскольку имеющихся в настоящее время экспериментальных данных для этого недостаточно. [c.304]

    Для емкостного нагревания кусок материала (диэлектрика) по-меигают в высокочастотное электрическое поле, образующееся между пластинами конденсатора, подключенными к току высокой частоты. Быстрым изменениям электрического поля сопутствуют необратимые изменения в диэлектрике (гистерезис). В результате образуется тепло во всей массе диэлектрика. Преимуществом этого процесса является почти одинаковая температура во всех.точках куска в противоположность конвективному нагреванию, при котором всегда возникают высокие температурные градиенты, часто портящие материал (например, из-за большого теплового расширения появляются сильные напряжения, приводящие к трещинам). [c.367]

    Явление гистерезиса (остаточная индукция, коэрцитивная сила) обусловлено необратимым намагничиванием. Необратимое намагничивание соответствует крутому подьему кривой намагничивания или крутой части гистерезисной петли, где намагничивание проходит через нуль. Поле, соответствующее наибольшей проницаемости, приблизительно равно коэрцитивной силе //с. Необратимое намагничивание обусловлено смещением междоменной границы. Иа процесс намагничивания влияют кристаллическая анизотропия и различные включения. Наличие внутренних напряжений приводит к изменению энергии междоменной фаницы, при этом основное значение имеет фадиент нагфяжений. При возникновении полей рассеяния возле включений образуется доменная субструктура. Магнитный поток как бы обходит включения,и внутри домена, возле включения, образуются малые домены и соответственно дополнительные междомен-ные фаницы. При росте одних доменов за счет других происходит переход фаницы через включение, что сопровождается увеличением поверхност- [c.54]

    Кроме обратимых упругих деформаций и необратимых деформаций вязкого и пластического течения, реальным твердым телам свойственны процессы упругого последействия и гистерезиса ( упругих задер- [c.181]

    Изотермы сорбции имеют характерный 5-образный вид с широкой петлей гистерезиса, простирающегося вплоть до низких значений PIPs. Аномальный гистерезис может наблюдаться как из-за частично необратимой сорбции паров бензола на активных центрах поверхности гидросиликатов или их набухания, так и за счет поглощения сопутствующих паров воды. [c.82]

    Возникновение электрических полей в нефтегазоводяной смеси изменяет дисперсность частиц в флюиде, что проявляется в изменении проницаемости за счет кольматации-декольматации поровых каналов твердыми частицами или газовыми микропузырьками и компенсирования капиллярного гистерезиса. Высокая чувствительность процессов коагуляции и пептизации к электрическим полям, возможно, является более важным фактором для фильтрации нефтегазоводяной смеси. Образование объемных зарядов порождает электрические поля, которые распространяются со скоростью света и изменяют условия движения флюида на далеких расстояниях от места первичного формирования, что может вызывать диспергирование нефти вдали от контакта нефть—закачиваемая вода ввиду сильной чувствительности коллоидных растворов к внешним воздействиям, а также возможной необратимости изменений, происходящих в таких системах под действием внешних факторов. [c.27]

    Изотермы некоторых более компактных структур цеолитов (например, анальцита и основного канкри-нита) указывают на аномальные свойства, вытекающие из ограниченных растворимостей твердой фазы обоих конечных компонентов обмена. Это явление может быть еще более осложнено наличием заметного гистерезиса, связанного с необратимостью процесса, как, например, при обмене в системе —Rb+ на анальците [8] (рис. 18). Если ион калия замещает ион рубидия и содержание калия в анальците достаточно велико, то богатые калием кристаллы зарождаются и растут на обогащенной рубидием матрице. Свободная энергия этого процесса положительна благодаря вкладу энергии сил натяжения, действующих на каркас, и свободной энергии раздела фаз, которая в свою очередь связана с самопроизвольным ростом обогащенных калием кристаллов до тех нор, пока общий состав твердой фазы не будет соответствовать термодинамическому равнове- [c.86]

    Резины — это сшитые полимеры с гибкими цепями, имеющие температуру стеклования ниже 273 С. Поперечные химические связи (узлы сетки) не позволяют цепям при деформации скользить относительно друг друга. Поэтому необратимые (вязкие) деформации у резины практически не возникают. При деформации такой полимерной сетки возникают высокоупругие напряжения, которые обычно называют высокоэластическими. Кроме того, возникают и напряжения, вызываемые силами внутреннего трения. В связи с этим прн деформациях на диаграмме растяжение — сокращение возникает петля гистерезиса. Однако, если деформацию проводить медленно, то петля гистерезиса уменьшается, и при очень медленных процессах деформации (в пределе при равновесной деформации) она практически исчезает, и резина ведет себя как упругое тело. Именно для этого режима деформации применимы соотношения термодинамики. [c.141]

    В классическом приближении [14] и др. определение равновесия графит —алмаз основано на расчете изменения свободной энергии (в предположении обратимости перехода, хотя он явно монотропен) без учета упругих полей и образования зародыша, фазовые переходы I рода идут только через образование зародыша, что приводит к значительным расхождениям между расчетными и экспериментальными р = 7-параметрами для процесса прямого превращения. Дальше приводятся результаты расчета нижней границы пересыщения ДС, а точнее, при заданных 7, способствующих образованию зародышей алмаза в графитовой фазе при условии полного или частичного сохранения когерентности межфазных границ. Дело в том, что учесть возможные нарушения когерентности (наиболее эффективного способа уменьшения свободной энергии гетерофазной системы) невозможно, так как механизм и времена релаксаций упругих напряжений в алмазе и графите мало изучены. Поэтому не будем совместно рассматривать процессы фазового превращения и деформации, а ограничимся расчетом ДСу ДСдеф. Следует подчеркнуть, что такой подход уже подразумевает необратимость процесса из-за наличия эффективного гистерезиса, обусловленного различиями в кристаллографических и упругих параметрах преобразующих фаз. Существует и еще вторая трудность при подобном расчете — отсутствие данных о механизме прямого перехода графита в алмаз, поскольку есть все 20 307 [c.307]

    То же можно сказать и о карбоксилпроизводных кремнезема. Изотермы адсорбции паров метанола, диэтиламина и пиридина на этих адсорбентах лежат выше, чем на исходном гидроксилированном кремнеземе. Обнаружен необратимый гистерезис адсорбции, что указывает на интенсивное взаимодействие молекул указанных веществ с поверхностными карбоксильными группами органокремнеземов. Значительная хемосорбция пиридина и диэтиламина, вероятно, объясняется образованием соответствующих химических соединений. Молекулы метанола, по-видимому, удерживаются поверхностными карбоксильными группами за счет водородных связей и, возможно, за счет образования поверхностных эфиров. [c.176]

    Рассмотрим результаты многократного измерения адсорбции—десорбции воды на К-, Ы- и Са-образцах со все увеличивающимся конечным относительным давлением (см. рисунок). Характерной особенностью полученных таким образом изотерм является совпадение в первых циклах их адсорбционных и десорбционных ветвей. Лишь после достшкения р р = = 0,65 на изотермах наблюдается необратимый гистерезис. Эти результаты получают простое объяснение, если предположить, что нежесткость субмикроскопической структуры каолинита является причиной появления аномальной гистерезисной петли на изотермах сорбции. [c.74]


Смотреть страницы где упоминается термин Гистерезис необратимый: [c.111]    [c.372]    [c.435]    [c.292]    [c.293]    [c.112]    [c.580]    [c.580]    [c.580]    [c.305]    [c.305]    [c.666]   
Адсорбция газов и паров Том 1 (1948) -- [ c.6 , c.533 ]

Адсорбция газов и паров (1948) -- [ c.6 , c.533 ]




ПОИСК





Смотрите так же термины и статьи:

Гистерезис



© 2025 chem21.info Реклама на сайте