Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Специальные адсорбенты водорода

    СПЕЦИАЛЬНЫЕ АДСОРБЕНТЫ ВОДОРОДА [c.121]

    Для определения углерода и водорода предложено несколько модификаций метода сожжения в быстром токе кислорода с дальнейшим определением продуктов окисления (углекислого газа и воды) после их поглощения специальными адсорбентами гравиметрическим методом. [c.135]

    Применение специальных, адсорбентов для водорода или использование вспомогательного высоковакуумного насоса делает откачную систему с адсорбционным насосом весьма эффективной. [c.4]


    Радикально повысить адсорбируемость водорода можно двумя путями снизить температуру адсорбента (охлаждать его жидким водородом) или при 78°К использовать специальные адсорбенты [2, 3, 10, 15], представляющие собой дисперсные металлы (платина, палладий), осаждаемые на адсорбенте, который выполняет в этом случае роль носителя. [c.119]

    Температура регенерации специальных адсорбентов составляет 300—350°С, если носителем является силикагель, и 400—450°С, если в качестве носителя используют активный уголь. Для ускорения процесса удаления хемосорбированного кислорода и активирования адсорбента в процессе регенерации на 40—60 мин вводят водород (давление несколько мм рт. ст.). Адсорбционная способность платины восстанавливается [15] после откачки в течение 6—10 ч форвакуумным насосом через азотную ловушку при 300—350°С, причем увеличение температуры лишь ускоряет регенерацию. Для быстрой регенерации платинированного угля после образования монослоя водорода (давление 10- —10 мм рт. ст.) оказывается достаточным отогрев адсорбента до комнатной температуры, при которой водород диффундирует в глубь кристаллов платины вследствие активированной адсорбции. Последующее охлаждение жидким азотом понижает давление водорода до 10 —10 ° мм рт. ст., но предельная адсорбция уменьшается примерно на 30%. [c.126]

    Газовая хроматография. Эта хроматография представляет собой один из вариантов распределительной хроматографии. Одной из ее разновидностей является газожидкостная хроматография. Неподвижной фазой служит нелетучая жидкость (глицерин, поли-этиленгликоль, ланолин и др.), которой пропитывают твердый порошкообразный адсорбент (активированный уголь, целит, специальный огнеупорный кирпич и т. п.) до такой степени, чтобы он оставался на ощупь сухим и легко продувался газом. Таким адсорбентом, содержащим неподвижную жидкую фазу, равномерно заполняют колонку — стеклянную или медную трубку диаметром примерно 0,5 см и длиной до 20 м. Роль подвил<ной фазы выполняет какой-либо газ (водород, гелий, аргон, азот), в который вносится разделяемое вещество также в виде газа или пара. Полученная смесь газов подается в колонку под определенным давлением и при низкой температуре. Разделение смесей на компоненты происходит в общем так же, как и в случае адсорбционной хроматографии в колонке при выделении растворенных веществ. [c.173]


    Газ-носитель подвижная фаза, В качестве газа-носителя применяют азот, воздух, гелий, водород и реже другие газы, не вступающие в реакцию с исследуемыми газами и наполняющими колонку сорбентом. В качестве наполнителя колонок (неподвижная фаза) могут быть применены указанные ранее адсорбенты — активированный уголь, молекулярные сита (искусственные цеолиты), силикагели, окись алюминия — или специальные жидкости типа высококипящих углеводородов, нанесенные на поверхность малоактивного адсорбента. В Советском Союзе в качестве такового применяют обычно измельченный инзенский кирпич, выпускавшийся ранее под маркой ИНЗ-600, или вновь разработанный диатомовый носитель марки ТНД-ТС-М. За рубежом выпускают аналогичные адсорбенты под различными марками (стерхамол, хромосорб и др.) Такие адсорбенты, на которые наносится тонкий слой жидкости, назьшают носителями (не смешивать с газом-носителем). Их роль состоит в том, чтобы создать большую поверхность для жидкости, являющейся активной неподвижной фазой. Применение в газовой хроматографии вместо активных адсорбентов жидкостей, обладающих различной растворяемостью газов, было предложено Джеймсом и Мартином в 1952 г., что резко увеличило возможности и улучшило метод газовой хроматографии. [c.67]

    Журавлев и сотр. [95] при определении малых количеств воды и гидроксильных групп на поверхности мелкодисперсных твердых тел воспользовались методом дейтерообмена. Пробу обрабатывали тяжелой водой в специально разработанной вакуумной системе. Затем освобождали водород из продуктов обмена и измеряли его изотопный состав с помощью масс-спектрометра. В работе приведены данные об анализе ряда твердых веществ, содержащих воду, доступную для изотопного обмена. В их числе адсорбенты, наполнители, пигменты, некоторые синтетические полимеры и биополимеры. При изучении процесса термической обработки силикагеля в вакууме было показано [96], что в условиях эксперимента происходит удаление и поверхностной, и внутренней влаги, причем количество теряемой силикагелем воды зависит от температуры опыта. [c.505]

    Фазовые адсорбционные равновесия и адсорбционно-десорбционные разделения исследовались нами динамическим стационарным методом [7]. Применение же хроматографии для точных измерений низкотемпературных адсорбционных коэффициентов разделения (5) в ряду орто-иара-модификаций изотопов водорода затрудняется зависимостью от степени заполнения поверхности (0) [4—9]. На окиси алюминия для хроматографии (ОАХ) пами наблюдалась преимущественная адсорбция 0-Н2 [6, 7] и П-Ва [8] соответственно из смесей 0-Н2— и-Нз и тг-Ва — о-В . Количественное исследование разделения стало возможным после специальной обработки адсорбента, смысл которой, по-видимому, заключался в частичном подавлении и стабилизации парамагнитных центров путем хемосорбции атомов водорода. [c.63]

    Усиливающийся интерес к криосорбционным методам откачки, обеспечивающим получение в вакуумных системах. безмасляного высокого и сверхвысокого вакуума, побудил к разработке новых высокоэффективных адсорбентов, обладающих высокими адсорбционными, кинетическими и механическими свойствами. Так, специально для вакуумной техники синтезирован новый адсорбент СаЕ—Т, адсорбционная емкость которого по воздуху, аргону и водороду значительно превышает адсорбционную емкость известных промышленных цеолитов [34]. С целью сопоставления адсорбционной способности нового цеолита с широко распространенными цеолитами СаХ, СаА, КаА и ЫаХ все они были подготовлены и испытаны при идентичных условиях. [c.71]

    Адсорбционные насосы с охлажденными микропористыми адсорбентами способны, в отличие от конденсационных насосов, поглощать очень большие количества газа при температуре его кипения с сохранением весьма низкого предельного давления. Адсорбционный насос, охлаждаемый жидким водородом или гелием, может эффективно работать длительное время при откачке не только конденсирующихся, но и низкокипящих газов. Современные микропористые адсорбенты обеспечивают эффективную работу насоса при охлаждении его жидким азотом. В этом случае приходится принимать специальные меры для эффективного удаления низкокипящих газов, так как гелий и неон практически не адсорбируются, а относительно слабая адсорбция водорода не может обеспечить необходимую скорость откачки насоса. [c.4]

    Резкое увеличение поглощения водорода при 78°К достигается использованием хемосорбционной способности ряда металлов. Исходя из специфики работы адсорбционного насоса, целесообразно на адсорбент наносить дисперсные металлы. В работе [10] показано, что при 78°К на платине, нанесенной на силикагель, водород образует монослой при давлении 10 мм рт. ст. При этом каждый поверхностный атом платины адсорбирует один атом водорода. Специальные методы осаждения платины на силикагель позволяют получить до-кристаллические слои платины, в которых все атомы [c.121]


    Удельную поверхность адсорбентов измеряют либо на обычном хроматографе с детектором по теплопроводности, приспособленном для подсоединения к нему U-образных трубок с адсорбентом, либо на специально смонтированной из отдельных элементов установке (рис. 10.40) [45]. Смесь азота и гелия (или азота и водорода) из баллона I проходит через ловушку 2 в установку 3. С помощью регулятора давления 5 в обеих ветвях [c.228]

    Наиболее прогрессивным решением использования пероксида водорода в технологии очистки сточных вод является ведение процесса окисления органических загрязнений после предварительного концентрирования их на специально подобранном адсорбенте-катализаторе. При этом глубокая деструкция пероксидом водорода органических загрязнений происходит не в жидкой фазе, а на поверхности адсорбента-катализатора, что обеспечивает возможность организации процесса в оптимальных, с точки зрения закона действующих масс, условиях. [c.32]

    На рис. 1.6 приведена схема установки гиперсорбции для разделения смесей газов, состоящих из водорода и углеводородов i—Сз. В адсорбционной колонне 3 сверху вниз движется поток активного угля. Для охлаждения адсорбента в верхнюю часть колонны встроен холодильник 2, а в нижнюю — нагреватель (десорбер) 4. Скорость движения сорбента регулируется с помощью систе.мы колосниковых решеток 5. Из колонны уголь поступает в бункер 6, откуда пневмотранспортом (потоком воздуха) подается в бункер I, из которого под действием силы тяжести он возвращается в колонну. Разделяемая смесь (условно содержащая три целевые фракции — легкую, промежуточную и тяжелую) подается в среднюю часть колонны, ближе к ее верху. Адсорбционная часть колонны разделена на секции специальными тарелками, которые не препятствуют движению сорбента. Число секций равно числу отбираемых фракций плюс один. Внутри колонны углеводороды и адсорбент движутся противотоком. Водород и метан практически не адсорбируются углем и выводятся из-под верхней тарелки. Адсорбированные средняя и тяжелая фракции вместе с углем движутся вниз. В зоне десорбции 4 практически все углеводороды десорбируются и поднимаются вверх, причем более тяжелые компоненты (Сз) вытесняют более легкие (Сг). Точки отбора расположены так, что из нижней секции отбирают тяжелую фракцию, а из-под второй снизу тарелки — промежуточную фракцию. Для более полного освобождения угля от трудно десорбируемых примесей на параллельной линии [c.37]

    Смесь низкокипящих газов и окислов азота (окись и закись азота, азот, окись и двуокись углерода и водород), образующихся при разложении и горении порохов, разделялась на специально обработанном силикагеле нри температуре ниже 0°С [107]. Смесь окислов азота может быть разделена на угле СКТ (рис. 83) [108]. Компоненты этой смеси выходят в порядке возрастания температур кипения на пористом полимере [109[. На этом адсорбенте хорошо разделяются также смеси азота, кислорода и аргона [c.152]

    Для поглощения водорода в изоляционную полость помещают специальные поглотители, из которых наиболее эффективен палладий. Металлический палладий хорошо поглощает водород при температуре жидкого азота, а в виде окисла — при температурах выше 273 °К. Палладий является сравнительно дорогим и недостаточно доступным металлом. Поэтому целесообразно применение более дешевых и доступных поглотителей, несколько уступающих ему по поглотительной способности. К ним относятся окислы серебра и меди. Эти поглотители, как и палладий, поглощают более 10 сж (при 273 °К и 760 мм рт. ст.) водорода на 1 г металла при давлении 1 X X 10" мм рт. ст. Для облегчения и ускорения поглощения водорода поглотитель должен иметь развитую поверхность, С этой целью его применяют в виде мелкодисперсного порошка или наносят на адсорбент. [c.423]

    Целлюлоза нерастворима в воде главным образом из-за своего гидрофобного характера. Атомы водорода в остатках глюкозы располагаются на поверхности кристаллов, тогда как гидроксильные группы ориентированы внутрь и образуют водородные связи с соседними молекулами. Но целлюлоза, подвергнутая специальной обработке, содержит значительное число экспонированных гидроксильных групп и может быть успешно использована в качестве высаливающего адсорбента [120]. Замещенные ионообменные целлюлозы адсорбируют белки, по-видимому, даже более эффективно, несмотря на то что при высокой концентрации соли ионообменные свойства их, вероятно, подавлены. Белки, связанные с такими целлюлозными матрицами, можно элюировать раствором с такой же высокой кон-центрацией соли, которая используется для их адсорбции, добавив в раствор вещества, ослабляющие водородные связи, — глицерин, сахарозу, мочевину или этанол [120]. Отсюда следует, что в этих условиях водородные связи имеют по меньшей мере столь же важное значение для адсорбции, как и гидрофобные взаимодействия. [c.186]

    Анализ соединения — это наиболее важный критерий чистоты и индивидуальности. Обычно анализ органических соединений на углерод и водород проводят путем сжигания образца. Небольшой, точно взвешенный образец вещества нагревают в токе чистого кислорода в электрической печи, а образующиеся газы пропускают через предварительно взвешенные трубки, наполненные специальными адсорбентами для двуокиси углерода и воды. Процентное содержание углерода и водорода в молекуле можно вычислить по весу образовавшихся воды и углекислого газа. Остальные элементы определяют стандартными методами количественного микроанализа. Органическое соединение считают удовлетворительно чистым, а его состав удовлетворительно сов-падающихм с предполагаемым, если найденное процентное содержание элементов отличается от вычисленного не более чем на 0,3%. После того как с помощью анализа показана чистота и найден элементный состав соединения, необходимо найти молекулярный вес, что можно сделать такими методами, как измерение плотности газа (гл. 6) или коллигативных свойств (гл. 34). После этого можно определить формулу молекулы. [c.167]

    При использовании специальных адсорбентов можно достичь высокие скорости откачки водорода насосом, охлаждаемым жидким азотом. Такие насосы имеют устойчивую скорость откачки в области ультравакуума, когда относительная адсорбируемость водорода максимальна, а количество поглощенного газа составляет (0,14-0,2) а,. [c.127]

    Волчкевич А. И., Демешкевич Т. В. и Полторак О. М. Улучшение скоростных характеристик высоковакуумных адсорбционных насосов по откачке водорода при использовании специальных адсорбентов. Обмен опытом в электронной промышленности, 1968, вып. 8, стр. 76—83. [c.152]

    В последние годы был разработан ряд процессов адсорбционной деас-фальтизации. В 1983 г. в США пущена установка адсорбционной деасфальтизации (процесс ART) мощностью примерно 2,5 млн. т/год (капиталовложения — около 50 млн. долл.). Процесс A1RT предназначен для адсорбционной деметаллизации (а также частичной декарбонизации, обессеривании и деазотирования) нефтяных остатков, которые затем используют в качестве сырья каталитического крекинга. Процесс осуществляют на установке, аналогичной обычной установке каталитического крекинга и состоящей нз реактора (лифт-реактора), где при температуре 480—590 °С и очень коротком времени контакта сырья и адсорбента асфальтены и другие металлы, серу и азотсодержащие соединения с низким содержанием водорода сорбируют на специальном мпкросферическом адсорбенте ( арткат ), и регенератора, в котором выжигают кокс, отлагающийся на адсорбенте. В процессе ART удаление металлов достигает свыше 95%, а серы и азота — 35—50%. Реакции крекинга и дегидрирования протекают лишь в минимальной степени. [c.130]

    В СССР А. А. Жуховицким и его сотрудниками разработаны весьма эффективные варианты хроматографических методов. В настоящее время созданы специальные типы адсорбентов и различные хроматографические приборы. Хроматографическими методами удается анализировать смеси, из которых эпитаксиально наращиваются пленки различных примесных полупроводников при изготовлении пленочных схем, а также решать другие важные задачи полупроводниковой химии и технологии. Динамическая адсорбция используется для удаления влаги из водорода и аргона, что необходимо при очистке полупроводников и создания полупроводниковых приборов в атмосфере этих газов. Динамическая адсорбция используется для улавливания иода из нефтяных вод в колонках с углем и пр. [c.171]

    Природный газ проходит сепаратор 7 для отделения жидких углеводородов, сжимается турбокомпрессором2до 28—30ат и подогревается в подогревателе 3 за счет сжигания в межтрубном пространстве природного газа. Последующую очистку проводят в две стадии. В аппарате 4 при 380—400 °С осуществляется каталитическое гидрирование органических соединений серы до сероводорода (водород или подходящий по условиям процесса водородсодержащий газ вводят перед подогревателем 3). В адсорбере 5 при температуре 360°С сероводород поглощается адсорбентом на основе окиси цинка (объем катализатора и поглотителя должен обеспечивать срок службы, определенный для катализатора синтеза метанола, или быть больше его). В избранных технологических условиях достигается высокая степень очистки. Очищенный газ подают на конверсию в трубчатую печь 6 в газ предварительно вводят необходимое количество водяного пара и двуокиси углерода. Температура паро-газовой смеси повышается в подогревателе трубчатой печи за счет тепла дымовых газов до 530—550 °С подогретый газ направляется непосредственно на катализатор в реакционные трубы. Процесс паро-углекислотной конверсии проходит при давлении до 20 ат. Тепло, необходимое для конверсии, получается в результате сжигания отходов производства или природного газа в специальных горелках. Тепло дымовых газов, имеющих температуру выше 1000°С, используют для подогрева паро-газовой смеси, получения пара высокого давления в котле-утилизаторе, подогрева воды, питающей котлы, и топливной смеси перед подачей ее в горелки трубчатой печи 6. Охлажденные до 200—230 °С дымовые газы выбрасываются в атмосферу или частично направляются на выделение двуокиси углерода. [c.85]

    Водород, содержащий примеси, подавали в адсорбционную часть установки (высота 70 сж) скорость подачи газовой смеси и соотношение между компонентами регулировались реометрами 2 и 3. Очищенный водород выводили сверху адсорбционной части, и степень его чистоты устанавливалась газоанализатором 4 по теплопроводности. Для анализа распределения газов в слое угля в адсорбционной секции был предусмотрен отбор пробы газа в промежуточной точке. Насыщенный примесями адсорбент опускался в десорбционную часть установки 5, причем скорость его движения регулировалась специальным ложечковым дозатором 6, расположенным ниже десорбера (угол наклона ложечки к горизонтальной плоскости определял скорость движения угля). [c.143]

    При полной термодеструкции органических полимеров образуются углеродные продукты. В зависимости от исходных материалов и способов обработки получают тонкопористые и неоднороднопористые (активные или активированные окислителями) угли. Однако поскольку эти угли геометрически и химически неоднородны и пики компонентов несимметричны, они непригодны для газовой хроматографии. Особенно сильно неоднородность этих углей проявляется при хроматографировании веществ, способных к специфическому межмолекулярному или химическому взаимодействию с находящимися на поверхности таких углей кислородсодержащими функциональными группами. Обработка водородом и отложение пирографита [18] не намного улучшает газохроматографические свойства этих углей. Гораздо лучшие результаты достигаются при применении в хроматографии газов тонкопористых углеродных адсорбентов, получаемых термодеструкцией ряда специально подготовленных полимеров (литературу см. в книге [1] и в работах [129—137]). Впервые в газовой хроматографии такой углеродный адсорбент — сарановый уголь [129], полученный термодеструкцией поливниилидеихлорида, был применен Гвоздович, Киселевым и Яшиным [130]. Полученные из синтетических органических полимеров угли были применены затем в газовой хроматографии в работах Кайзера [132] и в ряде других работ (см., например, [133—137]). Благодаря высокой однородности пор некоторые из таких углеродных тонкопористых адсорбентов получили название молекулярно-ситовых углей [131] или карбосит [132, 133]. [c.67]


Смотреть страницы где упоминается термин Специальные адсорбенты водорода: [c.148]    [c.148]    [c.356]    [c.461]    [c.403]    [c.304]    [c.124]    [c.490]    [c.16]    [c.32]    [c.5]    [c.225]    [c.271]    [c.225]   
Смотреть главы в:

Высоковакуумные адсорбционные насосы -> Специальные адсорбенты водорода

Высоковакуумные адсорбционные насосы -> Специальные адсорбенты водорода




ПОИСК







© 2025 chem21.info Реклама на сайте