Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Термодинамическое равновеси

    Положение двойной связи в олефиновой части определялось изучением инфракрасного спектра. Авторы нашли значительное количество олефинов с внутренним расположением двойной связи (/ - и у-олефины). Тем не менее количество а-олефинов было все же большим, чем это следует по данным термодинамического равновесия. Результаты анализа приведены в табл. 30. [c.102]


    Зависимость конверсии пропилена в газовой фазе от давления, температуры и содержания воды в исходном газе (термодинамическое равновесие) [c.63]

    Аналитический метод построения математической модели состоит в аналитическом описании объекта управления системой уравнений, полученных в результате теоретического анализа физико-химических явлений ка основе законов сохранения энергии и вещества, В этом случав математическая модель содержит уравнения материального и энергетического (теплового) балансов, термодинамического равновесия системы и скоростей протекания отдельных процессов, например, химических превращений, массопередачи, теплопередачи и т,д. [c.12]

    Давлением насыщения рнас является давление газа, находящегося в термодинамическом равновесии с пластовой нефтью. Если давление на пластовую нефть становится ниже давления насыщения, то из нефти начинает выделяться растворенный газ. Величина р связана с количеством растворенного газа и химическим составом газа и нефти. Поэтому величину р кс рекомендуется формулировать как давление, три котором весь имеющийся газ полностью растворяется в нефти, или — давление, при котором начинают всплывать из нефти первые пузырьки газа. [c.16]

    Таким образом, можно предполагать, что пластовая нефтегазовая система относительно находится в равновесии, если ее состояние при заданных внешних условиях в течение какого-либо времени не изменяется. Это вполне возможно для условий реальных нефтяных или газовых месторождений, ибо, как известно, на каком-либо отрезке времени (и часто очень длительном) всегда можно задать и достигнуть постоянство внешних параметров Т и р. Нужно отметить, что до начала разработки исходное состояние залежей нефти и газа, вероятно, отвечает состоянию термодинамического равновесия. [c.108]

    Элемент процесса мы будем называть единицей равновесия, если выходящие из него фазы находятся в термодинамическом равновесии. Для термодинамического равновесия таких фаз должно соблюдаться следующее условие размеры элемента процесса должны быть достаточными для достижения равновесия на входе. Поэтому геометрические размеры элемента процесса в числе данных, описывающих элемент процесса, излишни. [c.38]

    Условия термодинамического равновесия позволяют приписать определенное термодинамическое значение константам уравнения Аррениуса, как это только что было продемонстрировано в случае обратимых реакций. Не существует каких-либо реальных возражений и против того, чтобы распространить это на все реакции, так что можно переписать уравнение Аррениуса в следующем виде  [c.70]


    Такая форма записи температурной зависимости константы скорости связывает константы скорости с константами термодинамического равновесия для обратимых реакций. Нетрудно убедиться, что в случае обратимых реакций частотный фактор должен быть одинаковым для прямой и обратной реакций, так как [c.71]

    В любой момент определенная доля атомов Вг, принимающих участие в реакции, будет замещаться атомами Н, но общее число радикалов Н -Ь Вг в цепной реакции не изменяется. В результате реакции Вг-ЬНг- -НВг-ЬН образуется больше атомов водорода, чем при диссоциации Н2 2Н, т. е. в первом случае быстрее достигается квазиравновесное состояние . Кроме того, в первой системе выделяется большее количество свободной энергии. Выделяющаяся в реагирующей системе энергия расходуется на образование избыточного количества атомов Н, превышающего равновесную концентрацию при термодинамическом равновесии с Нг. Избыток свободной энергии в реагирующей системе может быть использован, в частности, для получения сверхравновесных концентраций других веществ. Это также характерно для цепных реакций. [c.292]

    В этом случае пара [А-В]с, заключенная внутри клетки растворителя, находится в термодинамическом равновесии с молекулой А — В и наиболее медленной стадией становится диффузия (стадия 3). В такой системе лимитирующей стадией является диффузия, несмотря на то что химическая реакция 1 идет гораздо более медленно. Скорость реакции будет зависеть от относительной константы скорости диффузии i) в в данном растворителе, и общая скорость реакции должна быть меньше, чем скорость реакции в газовой фазе. (Это сравнение в значительной степени академично,так как априори невоз- [c.465]

    Расчеты термодинамического равновесия показали, что равновесные концентрации циклопентанов при превращениях различных алканов (327 °С) имеют следующие значения  [c.191]

    Важная характеристика пламени — его температура. Температура является параметром, характеризующим систему, находящуюся в термодинамическом равновесии. Пламена не относятся к такого рода системам. Экспериментальные методы измерения температуры (методы зондовой и радиационной пирометрии) позволяют получить усредненное значение температуры, характеризующей главным образом энергию поступательного движения частиц в пламени. Методом обращения линии натрия в окрашенных пламенах были получены значения температур для смесей воздуха с топливами прр 0,1 МПа (влажные смеси, комнатная температура) [147]. Отмечается следующая закономерность в понижении расчетной температу- [c.116]

    Теория абсолютных скоростей реакций дает возможность определить константу скорости на основе термодинамических функций активного комплекса. Согласно этой теории, реакция проходит вследствие столкновения между молекулами с образованием промежуточного (активного) комплекса, который находится в термодинамическом равновесии с исходными веществами и постепенно переходит в продукты. Это означает, что скорость реакции определяется скоростью последнего ее этапа. [c.220]

    В табл. 6 приведены данные по содержанию С,-алкилбензолов в семи керосинах в процентах от общего содержания алкилбензолов одинакового молекулярного веса. Последняя колонка таблицы содержит данные, вычисленные для равновесия при 455°. За редким исключением, относительные количества изомеров С и С, удивительно схожи для различных сырых нефтей и близки к термодинамическому равновесию при 455°, как это было указано выше. [c.23]

    В связи С этим было рассчитано термодинамическое равновесие между ароматическими углеводородами фракции Са и произведено сравнение полученных данных с распределением углеводородов этих фракций в природной нефти и продуктах различных крекинг-процессов (табл. 8 [17]). Хорошее соответствие между относительными количествами ароматических углеводородов фракции Са из различного сырья указывает на весьма высокую степень подвижности алкильных групп и на стабильность равновесной смеси при 450° С. [c.110]

    ТЕРМОДИНАМИЧЕСКОЕ РАВНОВЕСИЕ ПРОЦЕССОВ ДЕГИДРОГЕНИЗАЦИИ [c.190]

    Равновесная глубина дегидрогенизации перечисленных реакций увеличивается с повышением температуры и уменьшением давления. Влияние температуры на дегидрирование парафиновых углеводородов до олефинов в условиях термодинамического равновесия показано на рис. 1 и в табл. 2. Вполне очевидно, что 50%-ная конверсия парафинов Сд и выше в альфа- [c.190]

    Они протекают практически без изменения объема, поэтому термодинамическое равновесие зависит только от температуры низкие температуры благоприятствуют образованию изопарафиновых углеводородов. Тепловой эффект реакции изомеризации невелик — от 2 до 20 КДж/моль — и мало меняется с изменением температуры. Исследованию равновесий реакций изомеризации парафиновых углеводородов посвящено значительное число работ экспериментального и расчетного характера, например [13-16]. Материал по сравнению расчетных и экспериментальных данных представлен в [11,17]. Наблюдаемое для некоторых углеводородов несовпадение объясняется недостаточно точным вычислением термодинамических величин. При расчете равновесных составов по значениям констант равновесия необходимо также учитывать, что на практике при протекании реакции изомеризации не всегда образуются все теоретически возможные изомеры например, в продуктах изомеризации пентана были обнаружены только два изомера — н-пентан и изопентан (2-метилбутан) неопентан (2,2-диметилпропан) не был обнаружен. Последнее вызвано неустойчивостью первичного карбкатиона — необходимой стадии перегруппировки вторичного карбкатиона. Ввиду отсутствия неопентана равновесие должно рассматриваться только между н-пентаном и изопен-таном. То же самое относится к изомерам гептана при проведении изомеризации отсутствуют 2,2-диметилпентан, 3,3-диметилпентан, 3-этил-пентан, что связано с затруднениями кинетического характера. [c.13]


    В процессе изомеризации на платиновых катализаторах эти углеводороды подвергаются превращениям в соответствии с условиями термодинамического равновесия для каждого углеводорода по нижеследующим [c.31]

    Исследователи отмечают [4, с. 23—32], что, начиная с нонана и выше, в равновесных смесях устанавливается очень близкое соотношение моно-и диметилзамещенных производных. В смысле термодинамической устойчивости существует оптимальное соотношение отдельных групп изомеров. Термодинамическое равновесие для высших парафиновых углеводородов в меньшей степени зависит от молекулярной массы. От- [c.111]

    Опираясь на вычисленные отношения термодинамического равновесия для различных гексеновых изомеров в области от 300 до 1000 К (рис. 50), Баас и сотрудники показали, что для достижения максимальной конверсии 2-метилпентена-1 в 2-метилпентен-2 в каждый проход следует поддерживать как можно более низкую температуру. Исследования Эммета (105] подтвердили, что подобную изомеризацию легко осуществить в мягких условиях со слабокислыми катализаторами [10] и что сдвиг двойных связей при этом проходит очень селективно. Эти результаты подтверждаются и другими авторами. Описан метод, по которому можно изомеризовать 2-метилпентеп-1 прп комнатной температуре с 50% раствором серной кислоты, получив при этом равновесную смесь 2-метилпентена-1 и 2-метилпентена-2 [107]. [c.228]

    Значение явлений диффузионного перенапряжения для электрохимических процессов. Уравнения, описывающие диффузионное перенапряжение, основаны на предположении о сохранении термодинамического равновесия между электродом и электро-лито.м и на формуле Нернста для обратимого потенциала. Исследование диффузионного перенапряжения не может дать поэтому никаких дополнительных сведений ни с действительном шути протекания электродной реакции, ни о стадиях, составляющих эту реакцию. Вместе с тем применение экспериментальных методов, основанных иа явлениях диффузионного перенапряжения — ртутногО капельного мегода и вращающегося дискового электрода,— позволяет определить многие величины, играющие важную роль в кинетике электродных процессов и в элеюрохимии вообще, а также установить, является ли диффузия единственной лимитирующей стадией. [c.319]

    Другая теория, весьма близкая к взглядам Нернста, была предложена-Лэнгмюром [2]. Для поверхности раздела твердое тело — жидкость Лэнгмюр также постулировал неподвижность пленки, в которой сосредоточено основное сопротивление массопередаче. Для систем жидкость — газ он предполагал лищь отсутствие относительного движения жидкостной и газоЬой пленок, допуская при.этом возможность строго ламинарного движения (с однородным профилем скоростей) в направлении, параллельном поверхности раздела. Это предположение не изменило основных выводов пленочной теории. Х отя гипотеза о неподвижных пленках и вытекающий из нее вывод о линейной зависимости между коэффициентами массоотдачи и молекулярной диффузии оказались неверными, пленочная теория сыграла пoлoжиteльнyю роль в развитии представлений о мас-сообмене. Предположение об особом значении процессов, происходящих в тонком слое вблизи поверхности раздела фаз, допущение о наличии термодинамического равновесия на границе раздела фаз, а также вывод этой теории об аддитивности диффузионных сопротивлений — в большинстве случаев сохраняют свое значение и в настоящее время. [c.169]

    Турбулизация межфазной границы может быть обусловлена- также возникающими при тепло- или массопередаче локальными изменениями поверхностного натяжения. Учет влияния концентрационных и температурных изменений поверхностного натяжения на гидродинамику вблизи межфазной границы представляет собой весьма сложную и в настоян1ее время еще не решенную задачу (необходимо исследовать устойчивость решения уравнения Навье — Стокса по отношению к малым возмущениям — локальным изменениям скорости). Пока сделаны лишь первые попытки решения этой задачи [72, 73]. В частности, показано [72], что возможность возникновения неустойчивости существенно зависит от знака гиббсовой адсорбции растворенного вещества в состоянии термодинамического равновесия, а также от соотношения между кинематическими вязкостями соприкасающихся фаз и коэффициентами диффузии веществ, которыми обмениваются эти фазы. Объяснено явление стационарной ячеистой картины конвективного движения, вызванного локальными градиентами поверхностного натяжения [73].. Дальнейшие исследования в этой области наталкиваются на серьезные математические трудности. [c.183]

    Важной особенностью катализа является сохранение ката — лизс1тором своего состава в результате промежуточных химических взаимодействий с реагирующими веществами. Катализатор не расходуемся в процессе катализа и не значится в стехиометрическом уравнении суммарной каталит ической реакции. Это означает, что катализ не связан с изменетн-тем свободной энергии катализатора и, следовательно, катализатор не может влиять на термодинамическое равновесие химических реакций. Вблизи состояния равновесия катализатор в равной степени ускоряет как прямую, так и обратную [c.79]

    Реакции изомеризации парафинов являются обратимыми, протекают без изменения объема, с небольшим экзотермическим эффектом (6 — 8 кДж/моль). Поэтому термодинамическое равновесие зависит только от температуры низкие температуры благоприятствуют образованию более разветвленных изомеров и получению, суедовательно, изомеризата с более высокими октановыми числами ( абл. 10.11). При этом равновесное содержание изомеров при данной температуре повышается с увеличением числа атомов угле — рода в молекуле н —парафина. [c.198]

    Лроцесс Сульфрин . В этом процессе реакция Клауса протекает на твердом катализаторе (окиси алюминия) при 125—150°С. При такой низкой рабочей температуре термодинамическое равновесие благоприятнее, чем при обычных условиях Клаус-установки. [c.190]

    Перейдем к рассмотрению условий термодинамического равновесия. Воспользуемся для этого изолированной системой, состоящей из двух фаз (а и Р), разделенных перегородкой с определеннымп свойствами. В такой системе к обеим фазам можно применить уравнение (3-21)  [c.124]

    Таким образом, равновесие имеет две противоположные тенденции, два изменения в противопо.пожных направлениях. Если исследовать существующее термодинамическое равновесие (фазовое, химическое) микрофизическими методами, например, с помощью меченых атомов, то можно экспериментально доказать наличие изменений в противоположных направлениях. [c.320]

    Эти реакции не пграют роли только в начальных стадиях процесса, как будет видно из констант равновесия и термодинамических данных для этой системы. При более высоких температурах (от 800 до 1000° К) термодинамическое равновесие способствует образованию углерода, Н2 и СН4 в этих реакциях отмечается обугливание. [c.307]

    И. В. Калечиц с сотр. [9] изучали конфигурационную изомеризацию 1,3-диалкилциклопентанов. Превращение г ис-1,3-диметилциклопентана в транс-форму над железо-платиновым катализатором протекает до концентраций, близких к равновесным обратное превращение проходит относительно неглубоко. В работах Ал. А. Петрова с сотр. [10] реакция конфигурационной изомеризации стереоизомерных ди- и полиалкилциклопента-нов была использована для установления термодинамического равновесия между ними и для вычисления значений ряда термодинамических функций. [c.69]

    В циклогексановом ряду конфигурационная изомеризация изучена особенно широко. Скорость достижения термодинамического равновесия в ряду гомологов циклогексана зависит от природы и активности катализаторов, условий проведения реакции и свойств исходных изомеров. Так, Ватерман и сотр. показали [28], что цис-и транс-, 3- и 1,4-диметилциклогексаны в присутствии катализатора Ni/кизельгур при 170—180°С и давлении водорода (7—8)-10 Па быстрее достигают термодинамического равновесия, чем 1,2-диметил-циклогексаны. Под действием скелетного никеля транс-1,2-диметил-циклогексан быстрее достигает равновесия, чем соответствующий цис-изомер. Аллинджеру с сотр. принадлежит серия работ [29—34], посвященных конформационному анализу стереоизомерных гомологов циклогексана, которые с помощью конфигурационной изомеризации в присутствии Pd-катализатора обратимо превращаются друг в друга. Состав термодинамически равновесных смесей, образующихся при этом, позволил авторам рассчитать константы равновесия, значения ряда термодинамических функций, а также энергий взаимных переходов различных конформеров. [c.76]

    Исследование углеводородов с прямой цепью методом инфракрасной спектроскопии показало, что непредельные соединения представляют собой олефины с двойной связью на конце, а также с двойной связью внутри цепи в траке-положении. Сопряженные диолефины не были обнаружены. Достаточное согласие, полученное для значений, рассчитанных из данных по инфракрасной спектроскопии для суммы олефинов с двойной связью на конце и с двойной связью внутри цепи в транс-положении, и значений, рассчитанных из бромных чисел для всех олефинов, указывает, что другие типы, как несопряженные диолефины или олефины с двойной связью внутри цепи в цис-положошш, присутствуют только в очень малых количествах. Соединения такого типа не могут быть обнаружены методом инфракрасной спектроскопхш. Эти результаты указывают на неполноту достижения термодинамического равновесия, хотя олефины с двойной связью внутри цепи в цис- 0 траис-полотениы присутствуют приблизительно н равных количествах. [c.66]

    Для некоторых групп изомерных углеводородов распределение изомеров в каталитических крекинг-бензинах приближается к относительным количествам, рассчитанным для термодинамического равновесия при температурах крекинг-процесса, т. е. от 450 до 500° С. Прежде всего, эТо применимо к различным изомерам олефинов, обладающих большой реакционной способностью в присутствии катализаторов при высоких температурах. Кэди и другие [1] нашли, например, что относительные количества изомерных метилбутенов или метилпентенов в бензине каталитического крекинга соответствовали термодинамическому равновесию при 470° С. Точно так же относительные количества изомеров С или С, ароматических углеводородов в каталитических крекинг-бензинах почти равны рассчитанным для термодинамического равновесия (Штрейф и Россини [8]). Отношение циклогексана к метилциклопентану, установленное для двух бензинов каталитического крекинга, представленных в табл. 3 и 4 (1 6 и 1 8 соотеетственно), мало отклоняется от равновесного (1 10). Для менее реакционноспособных изопарафинов такое соотношение обычно не наблюдается. [c.54]

    Изомеризация при низких температурах имеет большие преимущества с точки зрения термодинамического равновесия, которое в этом случае более благоприятно для образования изопарафинов, в том числе вы-сокоразветвленных изомеров, обладающих высокими антидетонацион-ными характеристиками. Во всех процессах глубина превращения парафиновых углеводородов лимитируется равновесием, однако разделение, возврат непревращенной части исходного сырья и высокая селективность процесса изомеризации позволяет получить глубину превращения исходного углеводорода, близкую к 100%. В зависимости от количества рецикла изменяются показатели и технико-экономическая характеристика процесса увеличение рецикла приводит к удорожанию процесса, обеспечивая при этом более высокие октановые числа изомеризата. С этой точки зрения наиболее эффективными являются процессы изомеризации, осуществляемые при низкой температуре, обеспечивающей максимальную глубину превращения за проход . [c.4]

    Расчет термодинамического равновесия реакции изомеризации низших парафиновых углеводородов С4-С8 не представляет значительных трудностей и был выполнен уже более 30 лет назад [14, с. 274-347]. Для парафиновых углеводородов Сд и выше такой расчет становится весьма трудоемким, что объясняется экспоненциальным ростом числа возможных изомеров с увеличением числа атомов углерода в молекуле. Например, у декана их 75, а у эйкозана уже 366319. Необходимо учтывать и то обстоятельство, что в реальных реакциях изомеризации парафиновых углеводородов практически не образуются все известные изомеры. Особенно затруднено образование сильно разветвленных изомеров. Более того, в работах Ал. А. Петрова [129] показано, что на реальных катализаторах возможен переход более разветвленных парафиновых углеводородов в менее разветвленные, например триметилпроизводных в диметилпроизводные. Цеолитсодержащие катализаторы накладывают наиболее существенные ограничения на структуру образующихся изомеров в связи со своеобразием их геометрии. В то же время известно, что сильно разветвленные изомеры высших парафиновых углеводородов в присутствии кислотных катализаторов подвергаются быстрому гидрокрекингу, в связи с чем в изомеризате не накапливаются. Таким образом, наряду с необходимостью внесения упрощений в методику расчета термодинамического равновесия изомеров высоко-кшящих парафиновых углеводородов существует потребность расчета группового состава изомеров. [c.111]


Библиография для Термодинамическое равновеси: [c.429]   
Смотреть страницы где упоминается термин Термодинамическое равновеси: [c.4]    [c.181]    [c.226]    [c.193]    [c.209]    [c.241]    [c.431]    [c.96]    [c.248]    [c.142]    [c.197]    [c.244]    [c.103]   
Химический энциклопедический словарь (1983) -- [ c.568 ]

Большой энциклопедический словарь Химия изд.2 (1998) -- [ c.568 ]




ПОИСК







© 2025 chem21.info Реклама на сайте