Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Бутадиен окислительное

    Бутадиен в СССР получают из этанола, одно- и двухстадийным дегидрированием н-бутана, выделением нз газов пиролиза и окислительным дегидрированием н-бутиленов. Производство его энергоемко. Расход топливно-энергетических ресурсов на 1 т бутадиена при контактном разложении этилового спирта составляет 1,77 т у. т., двухстадийном дегидрировании н-бутана — 5,67 одностадийном дегидрировании н-бутана—1,88, выделении из пиролизной фракции — 0,3 т у. т. Внедрение в производственном объединении Нижнекамскнефтехим окислительного дегидрирования позволяет экономить ежегодно 500 тыс. т топлива. [c.175]


    Впервые способ окислительно-восстановительного инициирования полимеризации в водных эмульсиях был открыт в 1940 г. Б. А. Долгоплоском [6]. Это открытие позволило в дальнейшем разработать во ВНИИСК эффективные окислительно-восстановительные системы, снизить температуру полимеризации с 50 до 5°С и существенно улучшить за счет этого качество бутадиен стирольных каучуков. С целью расширения сырьевой базы в качестве второго мономера, кроме стирола, в промышленности был применен а-метилстирол. [c.11]

    Роль окислительного присоединения, непредельного углеводорода к переходному металлу на стадиях образования каталитических центров иллюстрируется реакциями циклоолигомеризации бутадиена соединениями N1(0). При обработке циклододекатриен-никеля, бис(циклооктадиен)никеля бутадиеном в определенных условиях могут быть выделены я-аллильные металлорганические соединения I и П, способные, в зависимости от природы лигандов у атома металла, генерировать циклододекатриен или циклооктадиен [59]  [c.106]

    В производстве бутадиен-стирольных каучуков низкотемпературной полимеризации применяют две окислительно-восстановительные системы (см. гл. 6) необратимую (восстановитель — пирофосфатный комплекс Р +) и обратимую (восстановитель — [c.245]

    В настоящее время исследования процессов окислительного дегидрирования проводятся практически во всех странах с развитой промышленностью синтетического каучука. Наибольшее развитие эти работы получили в США (фирмы Шелл , Петро-Текс , Филлипс и др.), Англии (фирма Дистиллере Компани Лимитед ), Франции и Японии. Недавно фирма Филлипс сообщила об успешной промышленной реализации процесса окислительного дегидрирования н-бутенов в бутадиен. [c.682]

    Изучена активность 14 индивидуальных окислов в реакциях окисления н-бутана и н-бутенов [40, 41, 42]. По каталитической активности в реакции окислительного дегидрирования н-бутана в н-бутены и бутадиен исследованные окислы располагаются в ряд [c.692]

    Индивидуальные окислы не являются эффективными катализаторами одностадийного окислительного дегидрирования бутана в бутадиен. На наиболее избирательном катализаторе из ннх —NiO— выход бутадиена не превышает 10%. Наиболее эффективными оказались сложные окисные катализаторы никель-молиб-деновый [43] и магний-молибденовый [44]. Соотношение компонентов в катализаторах может меняться в широких пределах. Найден ряд промоторов, в том числе окислы металлов IV периода, а также редкоземельных элементов, позволяющих существенно увеличить активность катализаторов. [c.694]


    На описываемом заводе метан подвергают окислительному пиролизу при температуре 1700° кислородом, получаемым путем разделения воздуха на установках Линде. Продукты окислительного пиролиза после компримирования и охлаждения поступают на выделение ацетилена, который направляется далее на переработку в ацетальдегид. Ацетальдегид получают из ацетилена в реакторах, содержащих катализатор — водный раствор сульфата ртути, сульфата железа и металлическую ртуть. Образовавшийся ацетальдегид подвергают неполному гидрированию, продуктом которого является этиловый спирт. Конденсацией спирта с ацетальдегидом получают бутадиен. Гидрогенизация и конденсация проводится в трубках, обогреваемых циркулирующим горячим жидким теплоносителем, нагреваемым в отдельной топке. Бутадиен выделяют из полученной смеси дистилляцией и ректификацией. [c.162]

    Исследовали окислительное дегидрирование бутенов в бутадиен в реакторе диаметром 100 мм. Сложную кинетику реакции, представленную в оригинальной работе, можно, по-видимому, привести к простой схеме "8 А (где А — бутены В — бутадиен С — продукты разло- [c.220]

Рис. 144. Технологическая схема окислительного дегидрирования н-бутилена в бутадиен Рис. 144. <a href="/info/562669">Технологическая схема окислительного дегидрирования</a> н-<a href="/info/1336516">бутилена</a> в бутадиен
    Планом развития СССР на 19761—1980 гг. предусматривается также организация производства бутадиена димеризацией этилена и диспропорционированием пропилена (в бутилен и этилен). Разработан способ окислительного одностадийного дегидрирования бутана в бутадиен, позволяющий снизить себестоимость бутадиена примерно на 40% по сравнению с двухстадийным процессом. [c.184]

    При использовании резин для уплотнений следует учитывать влияние воды на релаксацию напряжений в них. Вода ускоряет релаксационные процессы, как это было установлено на резинах, полученных на основе бутадиен-нитрильных каучуков. Влияние это осложняется окислительными процессами, обусловленными растворенным в воде кислородом. [c.121]

    Предпочтительнее проводить окислительное дегидрирование бутана и изопентана, так как эти углеводороды являются наиболее дешевым сырьем, однако процесс окислительного дегидрирования парафинов протекает в более жестких условиях и с меньшей эффективностью (табл. 33) [32, с. 15—18], чем процесс дегидрирования олефинов. Поэтому наибольшие успехи достигнуты в разработке процессов окислительного дегидрирования олефиновых углеводородов, главным образом, н-бутиленов в бутадиен-1,3 в присутствии кислорода. В качестве катализаторов используются соединения ванадия, молибдена, висмута, кобальта, серебра, железа, меди. [c.181]

    Сравнительная характеристика процессов окислительного дегидрирования к-бутаиа в бутадиен-1,3 [c.182]

    Некоторый практический интерес для промышленности представляет процесс окислительного дегидрирования бутана в бутадиен с участием перекиси водорода [39]. Этот процесс не требует специальных катализаторов и проводится при температуре 593 °С и мольном соотношении бутан перекись водорода = 1 0,2. Реакцию можно направить на образование как олефинов, так и бутадиена. [c.188]

    Окислительная деструкция (старение) каучуков и резин протекает при облучении со значительно большей скоростью, чем при нагревании. Так, жесткость пленок из бутадиен-стирольного каучука после 20 сут естественного облучения в марте увеличилась на 870%, а в мае на 1700%, в то время как в темноте жесткость увеличилась за 3 года всего на 200%. [c.291]

    Наибольшие успехи достигнуты в разработке катализаторов процессов окислительного дегидрирования н-бутиленов. Катализаторы на основе молибдатов висмута, ферритов некоторых металлов, фосфатов олова позволяют получать из н-бутиленов бутадиен с высоким выходом и селективностью. [c.54]

    По каталитической активности в реакции окислительного дегидрирования н-бутана в бутилены и бутадиен исследованные оксиды различных металлов могут быть расположены в ряд  [c.54]

    Впервые окислительно-восстановительные системы нашли применение в СССР (1939—1940 гг.) для про мышленного производства бутадиен-стирольных каучуков при 50— 60°. [c.94]

    Различия между периодическим и непрерывным процессами (и между получаемыми продуктами) определяются, во-первых, аппаратурным оформлением этих процессов и, во-вторых, характером протекающей реакции (прежде всего, кинетическими закономерностями) и некоторыми свойствами реакционной системы (например, ее вязкостью). Проведение непрерывной эмульсионной полимеризации в принципе возможно в трубчатых теплообменниках (например, типа труба в трубе ) или в обычных автоклавах с интенсивным перемешиванием, снабженных рубашками и часто — дополнительными змеевиками для отвода теплоты реакции. Однако, несмотря на создание специальных окислительно-восстановительных систем, позволяющих достигать 60%-ной конверсии мономеров за 10— 20 мин при 5 °С, синтез эмульсионных бутадиен-стирольных каучуков в трубчатых реакторах не нашел промышленного применения, поскольку из-за низкой скорости полимеризации бутадиена на частицу устойчивый латекс получался при высокой сум.марной скорос- [c.164]


    Большой и мало использованный источник сырья для органического синтеза представляют парафины. В настоящее время процессы их окисления только начинают разрабатываться, например производство малеинового ангидрида из бутана и окислительное дегидрирование бутана в бутадиен-1,3 доведены до технической реализации [4]. [c.9]

    ДЕГИДРОГЕНИЗАЦИЯ (дегидрирование), отщепление водорода от молекулы орг. соединения. Обычно приводит к образованию двойной связи (С=С, С=0 и др.). Протекает в присут. тех же катализаторов, что и гидрогенизация, но при более высоких т-рах (300—550 °С) н более низких давл. (ог < 0,1 до 5 МПа). В пром-сти Д. этана получают этилен, Д. этилбензола — стирол, м-бутана (или м-бутенов)— бутадиен-1,3, изопропанола — ацетон и др. Д.— важная стадия многих нефтехим. процессов, напр, термич. крекинга, каталитич. риформинга. См. также Окислительная дегидрогенизация. [c.148]

    Окислительное дегидрирование Бутадиен [c.299]

    Окислительное дегидрирование Бутадиен (II) [c.442]

    Одним из путей подавления каталитической активности примесей металлов переменной валентности в процессах окисления является перевод их в неактивную форму за счет образования комплексов или хелатов. В качестве таких агентов могут применяться антиоксиданты, относящиеся к производным /г-фениленди-амина [30, 31], которые пассивируют каталитическое действие меди, марганца и железа в процессе окисления каучуков. Аналогичный эффект наблюдался при введении в высокомаслонапол-ненный бутадиен-стирольный каучук, содержащий повышенное количество меди и железа, таких антиоксидантов, как п-гидрокси- фенил-р-нафтиламин (параоксинеозон) или меркаптобензимидазол [31]. Достаточно эффективными пассиваторами меди в процессе окислительной деструкции каучуков является щавелевая кислота, аминобензойные кислоты, продукт конденсации бензальдегида с гидразином [41]. [c.631]

    Схема окислительного дегидрирования н-бутнлена изображена на рис. 144. Пар и воздух смешивают и перегревают в трубчатой печи 7 до 500 °С. Непосредственно перед реактором 2 в эту смесь вводят бутиленовую фракцию. Процесс осуществляют на стационарном катализаторе в адиабатических условиях при 400—500°С и 0,6 МПа. Тепло горячих реакционных газов используют в котле-утилизаторе 5 для получения пара (преимущество работы при повьшкнном давлении — для получения пара можно использовать тепло, выделяющееся при конденсации пара — разбавителя реакционных газов, в отличие от работы при атмосферном давлении при дегидрировании этилбензола и н-бутиленов). Затем газ охлаждают водой в скруббере 4 с холодильником 5 и промывают минеральным маслом в абсорбере 6. Там поглощаются углеводороды С4, а продукты крекинга, азот и остатки кислорода выводят с верха абсорбера и используют в качестве топливного газа в трубчатой печи /. Насыщенное масло из абсорбера б направляют в отпарную колонну 5, где регенерируется поглотительное масло, возвращаемое после охлаждения на абсорбцию. Фракция С4 с верха отпарной колонны 5 содержит 70% бутадиена. Из нее уже известными методами выделяют чистый бутадиен, а непревращенные н-бутилены возвращают на окислительное дегидрирование. [c.489]

    Та же самая смесь бутиленов в условиях окислительного аммоно-лнза дает бутадиен и метакрилонитрил. Очевидно, что масштабы возможного развития совместного окисления и окислительного дегидрирования м-бутиленов и изобутилена зависят от потребности и метакрилатах. [c.490]

    НЕФТЕХИМИЧЕСКИЙ СИНТЕЗ, произ-во крупнотоннажных орг. и неорг. продуктов на основе нефт. фракций, прир. газа и газов нефтепереработки. Важнейшие из продуктов Н. с.— этилен, аммиак, пропилеи, бензол, дихлорэтан, этилбензол, толуол, стирол, бутилены, винилхлорид, окись этилеиа, бутадиен, ксилолы, этиленгликоль, изопропиловый и этиловый спирты. Осн. процессы, к-рые использ. в Н. с.,— пиролиз, дегидрирование (в т. ч. окислительное), галогеиирование, окисление, гидратация, гидрирование, алкилирование, аммонолиз и др. [c.376]

    Определение химического состава полимера является первостепенной задачей, поскольку наличие тех или иных функциональньк групп в полимере даже в количестве около 1% мае может оказывать решающее воздействие на все его показатели. Количество непредельных связей в каучуке определяет его стабильность при окислительном старении, способность к вулканизации и т.д. Еще большее значение имеет анализ химического состава полимеров в тех случаях, когда они являются продуктами сополимеризации. Как известно, состав сополимера отличается от состава исходной смеси вследствие различной реакционной способности мономеров и, если неизвестны константы сополимеризации мономеров, его можно найти только аналитическим путем. Очевидно, что в случае двойных сополимеров (а таких большинство) достаточно определить содержание звеньев лишь одного из сомономеров. Если второй сомономер резко отличается от первого по составу (наличием азота, хлора, серы и др.) или по степени непре-дельности (например, в случае сополимеров олефинов и диенов), то анализ может быть выполнен химическим путем и без больших затруднений. Однако анализ таких сополимеров, как бутадиен-стирольные, затруднителен, и предпочтительнее пользоваться физическими методами. [c.32]

    Долимеривация в эвсульснн проводится в системе вода -мономер. В качестве эмульгаторов используй сульфоэфиры высших жирных кислоТ мыла жирных кислот, соли линейных и разветвленных алкилсульфатов, алкиларилсульфонатов и др. Эмульгатор оказывает влияние на скорость полимеризации и свойства латекса. Инициаторами являются окислительно-восстановительные системы, растворимые в воде. Эмульсионная полимеризах(ия клользуется при производстве полиакрилатов, поливинилхлорида, поливинилацетата и бутадиен-стирольного каучука, [c.287]

    Наиболее важным промышленным применением таких окислительно-восстановительных реакций является низкотемпературная эмульсионная полимеризация смеси стирол — бутадиен при получении каучука в присутствии гидроперекиси кумола и ионов железа в качестве катализатора. Органические мономеры полимеризуются, превращаясь в маслообразные капли в водной эмульсии, которая стабилизируется добавлением мыла и щелочей. Типовой промышленный рецепт приведен в табл. 11.1. Как видно, смесь эта сложная, и в деталях неизвестно назначение каждого ее ингредиента. Из них представляют интерес гидроперекись, ион железа, пирофосфат Na4P207-IOH2O (который необходим для растворения железа), и тиол (его добавляют в качестве переносчика цепи для уменьшения выхода продуктов с низким молекулярным весом и чтобы обеспечить получение полимера, легко поддающегося обработке). [c.133]

    Выбор соотношения мономеров в разных случаях определяется помимо экономических соображений требованиями, предъявляемыми к изделиям или материалам. Напомним, что с увеличением относительного содержания стирольных звеньев в сополимерах резко возрастает прочность невулканизованных пленок, однако падает их морозостойкость. Кроме того, следует учитывать, что непредельные бутадиеновые звенья склонны к окислительным и другим химическим реакциям поэтому в последние годы бутадиен-стиролъ- [c.176]

    Близкое строение молекулы олефина иногда приводит к различным направлениям реакции пропилен окисляется в акролеин, а бутен-1 дегидрируется в бутадиен. Степень конверсии этих оле-фииов и селективность оки сления на одной и той же поверхности различны вследствие образования неодинаковых поверхностных соединений. В гл. II упоминалось, что пропилен образует на поверхности я-аллилыный комплекс, а бутилены, по-видимому, дегидрируются по другому пути — через образование я-комплекса с одновременным отщеплением двух атомов водорода [462]. Различное поведение изомерных бутиленов объясняется стерическимп затруднениями, поэтому катализаторы окислительного дегидрирования должны 0 бладать и изомеризующей способностью. [c.286]

    Наиболее распространенный в промышленности контактный способ производства серной кислоты был осуществлен в начале текущего столетия. В годы первой мировой войны появились заводы синтеза аммиака. В настоящее время в крупных масштабах реализованы многие непрерывные каталитические процессы, в частности окисление этилена в окись этилена, окисление нафталина (ортоксилола) во фталевый ангидрид. Стирол производят каталитической дегидрогенизацией этилбензола, бутадиен — дегидрированием бутана или бутилена, акрилонитрил — окислительным аммонолизом метана. В нефтеперерабатывающей промышленности в очень крупных масштабах осуществляют каталитические процессы гидрообессерива-ния, крекинга, гидрокрекинга и риформинга. [c.10]

    В частности, окислительным дегидрированием бутенов или изо-пентанов можно получать бутадиен-1,3, стирол и а-метилстирол, соответственно, из этилбензола и изопропилбензола, альдегиды — из спиртов и т. д. При этом, в отличие от обьиного дегидрирования, когда необходим подвод значительного количества тепла (210-250 кДж/моль при дегидрировании н-бутана и н-бутенов), при окислительном дегидрировании выделяется тепло, которое можно регенерировать и использовать в производстве. [c.241]

    Бутен-2 (I), Оз (II), Вт, (III) Метан (I), HF (II), Оа (III), воздух (IV) Бутадиен-1,3 (IV) Окислительн . Трихлорфторметан (V), дихлордифторметан (VI), HjO ЬадОз в присутствии водяного пара (V), 700° С, в исходной смеси I II III V = 1 16 0,03 0,8. Наивысшая селективность и выход IV —72 и 66% [146] = >е галоидирование MgFj— u ls (3%) —ТагОз—СеА (1%) 450° С, т = 18 сек, состав реакционной смеси (об. %) I — 11,4, II — 9,4, III — 23,2, IV — 56. В продуктах реакции (вес. %) V — 76,2, VI — 14,4. Превраш,е-ние 1 — 82% [32] [c.449]


Библиография для Бутадиен окислительное: [c.64]   
Смотреть страницы где упоминается термин Бутадиен окислительное: [c.473]    [c.85]    [c.71]    [c.343]    [c.55]    [c.39]    [c.39]    [c.311]    [c.136]    [c.85]   
Технология нефтехимического синтеза Часть 1 (1973) -- [ c.203 ]




ПОИСК







© 2025 chem21.info Реклама на сайте