Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Фосфиды, определение

    Фосфин — сильный восстановитель он восстанавливает ионы металла до металла, окислы металлов до фосфидов, иод до подпетого водорода и т.д. Окисление фосфина иитратом серебра, иодом, перманганатом калия и другими окислителями используют для его количественного определения. [c.19]

    Широко применяемой калориметрической методикой определения энтальпий образования является сожжение вещества в калориметрической бомбе в атмосфере кислорода. По этой методике были определены, например, энтальпии образования многих оксидов (углерода, кремния, бора, фосфора, серы, магния, алюминия, титана, кобальта и др.) и энтальпии образования ряда соединений, таких, как, например, карбиды, фосфиды, нитриды, фазы переменного состава и т. д. Особенно широко она [c.32]


    Отношение к другим элементарным окислителям. Галогены, сера, азот, фосфор, водород и др. при определенных условиях относительно легко окисляют щелочные металлы с образованием галидов, сульфидов, нитридов, фосфидов, гидридов и др. (см. гл. I). Эти реакции протекают с выделением большого количества тепла, часто в форме горения, а иногда со взрывом (например, калий при взаимодействии с бромом). Менее активно взаимодействуют щелочные металлы с азотом и лишь литий соединяется с ним при обыкновенной температуре, но лучше при слабом нагревании  [c.36]

    Способ 2 [5, 6]. Металлический марганец (наивысшей степени чистоты) доводят до плавления в тигле из АЬОз в атмосфере чистейшего аргона (нагревание с помощью индукционной печи) или чистейшего водорода (нагревание с помощью печи сопротивления). Рассчитанное количество красного фосфора, спрессованного в таблетки, бросают в расплав, где тотчас же начинает протекать реакция образования фосфида. Для получения фосфида определенного состава можно сплавить полученный вышеописанным способом продукт с марганцем, фосфором или другим фосфидом марганца. [c.1693]

    ООО О Фосфиды, определенного или неопределенного химического состава, за исключением феррофосфора [c.133]

    Важный отличительный признак полимерных соединений с высокой степенью агрегации (такой тип соединений часто встречается также у сульфидов, селенидов, нитридов и фосфидов) — металлический тип проводимости. Остальные же свойства оксидов (температуры кипения, плавления, летучесть, растворимость и др.) определяются их принадлежностью к соединениям определенного типа. [c.473]

    В этом методе титрование проводят раствором хлорида свинца с применением палладиевого электрода. Определению мешают фосфиды и вещества, окисляемые Pd +, а также ионы Ni + и Со + при их концентрации 1 Ai и более. Для определения пирофосфатов используют также их способность образовывать комплексы с Ге +, избыток которого титруют при pH 1 раствором" тиосульфата натрия в присутствии катализатора — сульфата или хлорида меди (II). Индикаторный электрод — платина 1995]. [c.58]

    Единственным компонентом в газовой фазе является фосфор в виде четырехатомных молекул. При термической диссоциации ди- фосфида меди состав пара не соответствует составу конденсированной фазы. Поэтому при измерении неизбежно отклонение состава конденсированной фазы от стехиометрии. Для уменьшения этого отклонения необходимо сохранить относительно небольшой свободный объем ампулы при значительной навеске вещества. Однако специфика метода требует сохранения определенного свободного объема порядка 8—10 см , поскольку в противном случае существенно уменьшается чувствительность метода вследствие малого количества испаряемого вещества. Для соблюдения указанных требований рекомендуется использовать цилиндрическую ампулу длиной 130 мм с внутренним диаметром 6— 8 мм и толщиной стенок 2,5—3 мм с шаровидным расширением на одном конце, полностью заполняемым веществом (см. рис. 15). [c.33]


    Прямое определение Sb в сочетании с рядом других элементов производится в самых разнообразных материалах, в том числе в алюминии [54, 55, 1134, бериллии и его соединениях [305, 1297], боре [778, 11171 и фосфиде бора [26], ванадии и его окислах [234, 491, 1117], висмуте [809, 909, 1134], вольфраме и его соединениях [195, 739, 795, 1265], вольфрамовых рудах [1480], германии и его соединениях [559, 634, 905], горных породах [386, 730, 1182, 1240, 1336, 1443, 1599], графите и углероде [235, 397, 612], жаропрочных и тугоплавких сплавах [176, 177, 379, 1278, 1593], железе [425, 1134, 14411, железных рудах и минералах [198, 386, 636, 971, 1336], сталях [176, 546, 1278, 1441, 1593] и чугуне [61, 274, 546, 1250], золоте [404, 754, 909, 1095] и его сплавах [196, 389,390, 1167], индии [1168, 1308] и сплавах на его основе [814, 815, 1267], иттрии и его окислах [234, 272], алюмоиттриевом гранате [82], кадмии [598, 599, 1134] и кадмиевых сплавах [819], кобальте [60, 153, 1134], кремнии [252, 1619], кварце [154], карбиде кремния 109, 110, 288, 789, 790, 1353], кремниево-медных сплавах 594], силикатах [1586], технических стеклах [612, 1579], меди 129, 482, 964, 997, 1176, 1599, 1609, 1645, 1654], медных сплавах 96, 482, 1048, 1188, 1457,1463, 1566], окиси меди [199], продуктах медеплавильного производства [3601 и медных электролитах [1298, 1600], молибдене и его соединениях [104, 237, 308, 795, 1325, 1347, 1443], мышьяке [472, 1134], никеле и никелевых сплавах [486], ниобии и его окислах [49, 972], олове [582, 744, 782, 812, 900, 1684] и его сплавах [1210, 1494, 1495], полупроводниковых материалах [668, 678, 806, 1298, 16841, припоях [210, 1101], свинце [481, 534, 908, 1154, 1155,1193, 1543,1655], свинцовых сплавах [126, 871], рудах [53, 667, 806, 1143] и пылях [811], РЗЭ и их окислах [234, 353], селене [154, 155, 499, 747, 818, 1134], селениде ртути [715], сере [189, 1134], серебре [388, 390, 391, 909, 1598], хло- иде серебра [1362], стеклоуглероде [397], сульфидных рудах 638], тантале [237], теллуре [156, 591, 592, 1134, 1613], теллуровом баббите [1656] и теллуриде свинца [342], типографских сплавах [323], титане и двуокиси титана [288, 306, 1262], тории и его окислах [272], уране [1447], окислах урана [878, 1182, 1240] и урановых рудах [1443], ферросплавах [792, 793], фосфоритах [879], хроме [555, 729, 792] и его окислах [54, 55, 571], цинке [976] и цинковых рудах и минералах [1142], цирконии [679] и двуокиси циркония [1368], производственных растворах [205, 882, 1290, 1323, 1324, 1483], сточных и природных водах [429], азотной, серной, соляной, уксусной, фтористоводородной и бромистоводородной кислотах [111, 121, 407, 552, 574, 10081, воздушной пыли [121. [c.81]

    Описан [26] спектральный метод определения 8Ь и других 24 примесей в фосфиде бора. [c.125]

    Для повышения чувствительности определения 8Ь и других легколетучих примесей в фосфиде бора рекомендуется применять [c.125]

    Фосфид бора трудно переводится в раствор. При непосредственном спектральном анализе чувствительность определения кальция равна 10 %. Если образец смешивают с носителем — хлоридом натрия в отношении 2 1, — то получаются хорошие результаты и чувствительность увеличивается до 5,7-10 %. Пробу помеш ают в кратер угольного электрода. Используют дугу переменного тока 18 а, ИСП-22 линия Са 3179,33 A [15]. [c.119]

    Реагенты, применяемые для разложения фосфидов при определении [c.18]

    Приводится определение фосфидов и фосфатов в карбиде кальция люминесцентным методом [43]. [c.80]

    Те же авторы [133] при определении галлия в арсениде и фосфиде галлия в качестве индикаторного использовали графитовый электрод. Титрование проводили при pH 3 по току окисления БФГА при потенциале графитового электрода +1,1 в (относительно нас. к. э.). Мышьяк и фосфор не мешают определению до соотношения Оа Э = 1 1,5. [c.107]

    Метод дуги переменного тока использован для определения галлия в солях редких щелочных металлов [502], фосфиде бора [22], свинце [161], сере [505, 507], в рудах и концентратах алюминия, цинка, свинца и меди [125, 185, 1362], бокситах [185], золе углей [185], силикатах [130, 872, 873] и других горных породах 1333], в сернистых (материалах [1333], глинах [1272, 1334], угольном порошке [1286], в олове высокой чистоты [558], металлическом индии [909], г( рючих сланцах [942], двуокиси кремния и кварце [206], селене [506, 508] и в кадмии высокой чистоты (156  [c.159]

    Галлай и Алимариным [1ЭЗ] предложен метод амперометрического определения галлия в арсениде и фосфиде галлия. Мышьяк и фосфор не мешают определению галлия до соотношения Оа Э=1 1,5. [c.194]

    Сурьма и висмут образуют сплавы с большинством металлов. В сплавах сурьмы с активными металлами (шелочными, щелочноземельными) образуются соединения, состав которых соответствует определенным валентным отношениям. Эти соединения, называемые стиби-дами, например МазЗЬ, СэзЗЬг и т. п., по свойствам напоминают карбиды, силиды, фосфиды активных металлов. В частности, при действии кислот они разлагаются с образованием гидрида (стибина)  [c.212]

    Химические свойства. Железо является металлом со средней восстановительной активностью. При окислении его слабыми окислителями получаются производные двухвалентного железа сильные окислители переводят его в трехвалентное состояние. Эти два валентных состояния являются наиболее устойчивыми, хотя известны соединения железа с валентностью 1, 4 и 6. Являясь аналогом рутения и осмия (аналогия по подгруппе), железо имеет также много сходного с кобальтом и никелем (аналогия по периоду). При определенных условиях оно вступает в реакции почти со всеми неметаллами. При невысоких температурах (до 200° С) железо в атмосфере сухого воздуха покрывается тончайшей оксидной пленкой, предохраняющей металл от дальнейшего окисления. При высокой температуре оно сгорает в атмосфере кислорода с образованием Fe Oi. Во влажном воздухе и кислороде окисление идет с получением ржавчины 2Fe20a HgO. Галогены активно окисляют железо с образованием галидов FeHlgj или FeHlgg (иодид железа (III) не образуется). При нагревании железо соединяется с серой и селеном, образуя сульфиды и селениды. В реакциях с азотом и фосфором получаются нитриды и фосфиды в случае малых концентраций азота образуются твердые растворы внедрения. Нагревание с достаточным количеством [c.348]


    Индий и его соединения. При определении магния и других примесей в индии химико-спектральным методом основную массу индия предварительно удаляют экстракцией его бромида эфиром из QN НВг. Раствор, содержащий примеси, выпаривают на угольном порошке, содержащем 5% индия. Концентрат испаряют из кратера угольного электрода (анода) в дугу постоянного тока. Чувствительность метода 10 %, коэффициент вариации 40 %> [96, 98], Об определении индия в фосфиде, арсениде и антимониде индия см. в работах [266, 278, 483]. [c.176]

    Подобно азоту, фосфор проходит в природе определенный цикл превращений. При образовании земной коры часть фосфора была, вероятно, связана металлами, причем получившиеся фосфиды вошли в состав более глубоких слоев земной оболочки. Другая часть соединилась с ( ислородом в Р2О5. Этот кислотный ангидрид, комбинируясь с окислами металлов, образовал затем ряд минералов, в большинстве которых наряду с РгОа оказались включенными и другие кислотные онислы. Подобные фосфорнокислые или смешанные минералы в последующие геологические эпохи постепенно разлагались под действием воды и углекислого газа с частичным выделением растворимых солей фосфорной кислоты. [c.462]

    Как правило, -элементы не дают бинарных соединений определенного состава с водородом (кроме I, II и III групп). Весьма характерны для них карбиды, нитриды, фосфиды, бориды и т. п. Переходные элементы могут образовывать соединения, не имеющие аналогов среди соединений непереходных элементов, типа [Ре(СО)5]2, [Fe( 0)2(N02)], K[Nb( 0)5], Ks [Fe( N)sNO], (я-С.5Н5)2ре. Для тяжелых переходных 5 -элeмeнтoв характерны кластерные соединения, в которых наряду с ковалентными связями имеют место связи металл—металл (М—М) типа (ТабС1б)2С12- [c.499]

    Из фосфидов нашлн широкое применение GaP и InP как полупроводниковые и оптоэлектронные материалы . Кроме того, их применяют в сцинтил-ляционных счетчиках, фотоэлектронных умножителях, а также в солнечных батареях. Твердые растворы GaP—InP служат источником лазерного излучения в определенном диапазоне длин волн. [c.282]

    Многие кристаллические вещества оксиды, селениды, теллуриды, нитриды, карбиды, фосфиды и т. д. — построены не из молекул, а из атомов. Для них удается установить только простейшие формулы, т. е. определить только простейшее отношение числа атомов элементов в веществах по процентному содержанию. Эти отношения часто оказываются изменяющимися в известных пределах в зависимости от условий получения веществ, поэтому в их формулах появлякугся дробные индексы, например, TiOi. , ZnOi и т. д. Ясно, что для соединений переменного состава, но сохраняющих тип строения кристаллов в определенных пределах изменения состава, стехиометрические законы неприменимы (см. гл. IV), 1211, [991. [c.7]

    Гидриды, карбиды, силициды, нитриды и фосфиды металлов побочных подгрупп представляют собой металлоподобные (похожие на металлы) соединения. При их получении атомы неметаллов внедряются в между-узлия кристаллической решетки металла, как показано на рис. 10.5. Состав таких соединений не соответствуете определенным степеням окисления элементов, часто он бывает нестехиометрическим, например TiHi, . [c.199]

    Коррозия под напряжением характерна для латуней, и, чем выше содержание в них цинка, тем яснее она выражена. Двухфазные а + Р- или р + усплавы подвергаются коррозионному растрескиванию под действием влажного воздуха. Коррозионное растрескивание а-латуней вызывают аммиачные растворы или воздух, содержащий аммиак. Вредное влияние оказывают цаже незначительные примеси аммиака микробиологического происхождения. Коррозионное растрескивание может быть вызвано и другими коррозионными агентами. Этот вид коррозии наблюдается и у нелегированной меди, содержащей 0,17оР, когда по границам зерен выделяется фосфид меди с низким пределом текучести. Остальные медные сплавы также чуствитель-ны к коррозии под напряжением, но в меньшей степени, чем латунь. Трещины в а-латуни распространяются по границам зерен, в то время как в р-латунях сначала появляется межкристаллитная коррозия, которая через определенное время переходит в транскристаллитную. [c.117]

    Для отделения тория от фосфорной кислоты чаще всего используют его осаждение щавелевой кислотой. Фосфорная кислота при этом остается в растворе, где ее определяют обычными методами после разложения Н2С2О4. Об определении торня в фосфиде см. [1908]. [c.155]

    В эксикатор 1 насыпают раздробленный сухой лед 11 и подводят, поток Аг, который смешивается с испаряющимся СО2. Холодная смесь газо поднимается наверх и предотвращает утечку паров фосфора из горячей зоны печи. Для этой же цели служат влажные асбестовые прокладки на керамической трубке 4. Для получения возможно более гомогенного продукта реакции Ln с Р лучше, чтобы реакция быстро начиналась при определенной температуре и также быстро протекала. Температура воспламенения-смеси должна быть в интервале 700—800 °С. Для этого печь предварительно нагревают без тигля с веществом до 1000 С и регулируют поток инертного газа таким образом, чтобы пространство печи равномерно им продувалось, сохраняя при этом нужную температуру. Реакционный тигель подве шивают на хромоникелевой проволоке 13, опускают его в горячую печь и-закрывают печь керамической крышкой 6. Температура печи вначале падает до 800°С, но за 1—2 мин восстанавливается, что является признаком начала реакции. Избыток фосфора в виде паров удаляется из peaKHnoHHofr смеси, потоком инертного газа частично выносится наверх и сгорает на воз- духе, а частично конденсируется в нижней холодной части прибора. Через несколько минут реакционный цилиндр вынимают, быстро охлаждают ег в сосуде с сухим льдом и в боксе извлекают образовавшийся фосфид РЗЭ Полученное вещество необходимо нагреть в вакууме при 600 °С для удаления следов свободного фосфора. [c.1201]

    Развитие новых отраслей промышленности — атомной энергетики, ракетостроения, полуироводниковой техники — связано с ирименением материалов особой чисто-т ы, К ним относятся, например, элементные полупроводники (германий, селен, теллур), полупроводниковые соединения (арсенид галлия, фосфид индия), высокочистые цирконий, ниобий и др. В отдельных случаях содержание примесей в этих материалах не должно превышать 10 — 10- %. Для определения различных содержаний элементов необходимы соответствующие методы анализа. В одних случаях для применяемых методов характерным является низкий предел обнаружения, в других — в ы с о- [c.6]

    Продолжительность проведения анализа составляет час. Для определения галлия в фосфиде галлия применяют пульсполя-рографический метод [143]. [c.183]

    Описаны химикоспектральные методы определения Ag, 2п, Си, С(1, РЬ и Аи в фосфиде индия [319]. [c.183]

    Метод дистилляции на носителе применен также к анализу фосфида бора [22], урана [103], его двуокиси [657] и закиси-окиси [737]. При определении галлия и других элементов в цинке и селене концентрат примесей на угольном порощке получают путем удаления цинка вакуумной сублимацией [554, 55 5, 556], а селена — возгонкой двуокиси селена [506, 508] чувствительность определения галлия в цинке — Ы0 %, а в селене — 2-10 % При определении 10- —10- % Ga в кислотах (HF, HNO3, НС1, СНзСООН, jH2S04) концентрат примесей получают обогащением пробы путем испарения анализируемой кислоты на угольном порошке [105, 398]. [c.165]


Смотреть страницы где упоминается термин Фосфиды, определение: [c.129]    [c.189]    [c.463]    [c.281]    [c.38]    [c.364]    [c.2164]    [c.44]    [c.59]    [c.96]    [c.97]    [c.364]   
Фотометрический анализ методы определения неметаллов (1974) -- [ c.78 ]




ПОИСК





Смотрите так же термины и статьи:

Фосфиды



© 2024 chem21.info Реклама на сайте