Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Коэффициент газов в воздухе

Рис. 11. Зависимость содержания кислорода в отходящих газах (кривая 1) и температура горения фосфора (кривая 2) от коэффициента избытка воздуха, Рис. 11. <a href="/info/641926">Зависимость содержания</a> кислорода в отходящих газах (кривая 1) и <a href="/info/804545">температура горения фосфора</a> (кривая 2) от коэффициента избытка воздуха,

    Потери тепла в атмосферу кладкой печи и ретурбентами зависят от поверхности печи, толщины и материала кладки и свода. Они составляют 6—10%. Потери тепла стенками топочной камеры оцениваются величиной 2—6%, а в конвекционной камере в пределах 3—4%. Потери тепла дымовыми газами зависят от коэффициента избытка воздуха и температуры газов, уходящих в дымовую трубу. Определить их можно по рис. 177 (а и б), учитывая, что температура дымовых газов при естественной тяге должна быть не ниже 250° С и на 100—150° С выше температуры сырья, поступающего в печь. Использованием тепла отходящих дымовых газов на подогрев воздуха с применением искусственной тяги можно значительно снизить потери тепла дух и иметь трубчатую печь с к. п. д. 0,83—0,88. [c.284]

    Пример 1. Сухой коксовый газ имеет состав (по объему) 56,0% Иг, 25,5% СН4, 2,5% тяжелых углеводородов (С Н ), 7,0% СО, 2,6% СО2, 0,7% Оа и 5,7°/о N2. Подсчитать а) количество сухого воздуха для полного сгорания этого газа, если коэффициент избытка воздуха а = 1,1 б) состав продуктов сгорания. [c.265]

    На рис. 177 приведены кривые энтальпии дымовых газов при различных коэффициентах избытка воздуха для мазута (а) н крекинг-газа (б). [c.281]

    Уравнение (94) показывает, что максимальная температура горения повышается с увеличением теплоты сгорания топлива, с повышением температуры воздуха, поступаюш,его в топку, и с уменьшением коэффициента избытка воздуха и потерь в окружающую среду. Увеличение коэффициента избытка воздуха и рециркуляция газов снижают максимальную температуру горения. [c.114]

    Потери теплоты в окружающую среду через кладку печи составляют 4 — 8% от рабочей теплоты сгорания топлива, потери теплоты с уходящими дымовыми газами зависят от коэффициента избытка воздуха и температуры этих газов. Обычно температуру уходящих дымовых газов принимают на 150—200° вьппе температуры поступающего в печь сырья  [c.230]

    Высокий к. п. д. современных трубчатых печей кроме совершенствования самой конструкции может быть достигнут также благодаря более полному использованию теплоты отходящих дымовых газов для предварительного подогрева воздуха, подаваемого на горение, а также проведением ряда мероприятий улучшения конструкции форсунки предварительного перемеш ивания газообразного топлива с воздухом установки форсунок в карборундовом муфеле. Карборунд катализирует процесс горения, способствует уменьшению коэффициента избытка воздуха и сокращению длины факела, поэтому топливо успевает сгореть в самом муфеле [35]. [c.106]


    В связи с этим воздух, поступающий в камеру сгорания газотурбинного двигателя, обычно делят на три потока. Первый поток поступает в камеру сгорания, имеющую завихритель (рис. 3.27), через кольцевой зазор между корпусом форсунки и внутренним кольцом завихрителя, чем обеспечивается охлаждение форсунки. В этой зоне топливо распыляется, частично испаряется и воспламеняется а составляет 0,2—0,5 [166]. Второй поток воздуха вводят в зону горения через завихритель и через первые ряды отверстий диаметром 12—30 мм в жаровой трубе. Этот воздух обеспечивает сгорание смеси при температуре во фронте пламени, равной 2300—2500 К, и последующее снижение температуры газов до 2000 К- Коэффициент избытка воздуха при этом возрастает до 1,2—1,7. Роль завихрителя заключается в закручивании потока воздуха и создании воздушного вихря, вращающегося вокруг оси жаровой трубы. При этом в центральной части трубы создается зона пониженного давления, куда устремляется поток из средней части камеры сгорания. Продукты сгорания, движущиеся противотоком к основному потоку распыленного топлива, ускоряют испарение и обеспечивают нагревание топливо-воздушной смеси до температуры воспламенения. Турбулизация газо-воздушного. потока приводит к увеличению скорости распространения пламени, а уменьшение осевой скорости воздуха вблизи границы зоны обратных токов удерживает факел в определенной области. Третий поток воздуха поступает через задние ряды боковых отверстий в зону смешения. Этот воздух снижает температуру газов до значения, допустимого по условию прочности лопаток турбины. [c.164]

    Горелка состоит из металлического каркаса — корпуса, к которому присоединен инжектор с соплом для прохода топливного газа, и заслонки, регулирующей подвод атмосферного воздуха. В металлический корпус монтируется огнеупорная керамическая чаща, центральное отверстие которой перекрывается распределительным колпачком, направляющим газовоздушную смесь на поверхность горелочного камня. Горение смеси происходит на поверхности керамической чаши, без образования факела (режим беспламенного сжигания топлива) с коэффициентом избытка воздуха а=1,06. [c.63]

    Для достижения полноты сгорания метана необходимо обеспечить хорошее смешение газа с воздухом сжигать газ с коэффициентом избытка воздуха а=1,05—1,15, что соответствует содержанию в продуктах сгорания топлива 1—3% кислорода поддерживать в зоне горения высокую температуру. Несоблюдение этих условий приводит к значительным потерям тепла вследствие химической неполноты сгорания. Следует отметить, что содержание в продуктах сгорания природного газа [c.109]

    На фиг. 178 представлен еще один способ улучшения коэффициента полезного действия печи путем организации нагрева отбросными дымовыми газами воздуха, подаваемого на горение Нагрев воздуха осуществляется в трубчатом воздухоподогревателе, устанавливаемом над конвективным пучком. [c.263]

Рис. 4.13. Повышение температуры газа Ai в камере сгорания ГТД в зависимости от коэффициента избытка воздуха а и полноты сгорания топлива. Рис. 4.13. <a href="/info/913680">Повышение температуры газа</a> Ai в <a href="/info/34137">камере сгорания</a> ГТД в зависимости от коэффициента избытка воздуха а и <a href="/info/90827">полноты сгорания</a> топлива.
    На смену печам кострового типа пришли печи конвекционные, в которых змеевик труб отделен от камеры сгорания перевальной стеной. При эксплуатации таких печей были установлены существенные недостатки высокая температура дымовых газов над перевальной стенкой, оплавление и деформирование кирпичной кладки, прогар труб верхних рядов змеевика. Для снижения температуры в топочной камере применяли рециркуляцию дымовых газов и осуществляли горение топлива с повышенным коэффициентом избытка воздуха. Однако повышенный расход воздуха снижал к. п. д. печей и не уменьшал прогар труб. [c.273]

    Причина появления окиси углерода — неполное сгорание, поэтому содержание окиси углерода в отработавших газах бензиновых двигателей зависит главным образом от коэффициента избытка воздуха (рис. 141). Вследствие неравномерности распределения топлива по массе заряда окись углерода присутствует в отработавших газах даже при стехиометрическом соотношении воздуха к топливу (а = 1). [c.345]

    Пример 6. Л. Построить график г — I (теплосодержания дымовых газов) при коэффициенте избытка воздуха а =1,1 для топливного газа (элементарный состав газа дан в примере 6. 3). [c.99]


    Решение. Состав дымовых газов при коэффициенте избытка воздуха а = 1,1 определяем по формулам (6. 12) — (6 . 16) в киломолях на 1 кг топлива  [c.99]

Рис. 6. 1. Теплосодержание дымовых газов в зависимости от коэффициента избытка воздуха. Рис. 6. 1. <a href="/info/1446546">Теплосодержание дымовых</a> газов в зависимости от коэффициента избытка воздуха.
    График г — I позволяет определить теплосодержание дымовых газов, образующихся нри сгорании 1 кг топлива, при любых температурах для заданного коэффициента избытка воздуха. [c.100]

    В производстве термической фосфорной кислоты коэффициент избытка воздуха принимают 1,75—2,0, что соответствует содержанию кислорода в отходящих газах 10—13 масс. % и температуре горения фосфора 1800—2100 °С. [c.73]

Рис. 4.30, Дымность газов Д в зависимости от коэффициента избытка воздуха а при различных температурах воздуха (по данным С. О. Апельбаума) Рис. 4.30, Дымность газов Д в зависимости от коэффициента избытка воздуха а при <a href="/info/1327047">различных температурах воздуха</a> (по данным С. О. Апельбаума)
    Масса сухого газа, подаваемого в сушильный барабан, в расчете на 1 кг сжигаемого топлива определяется общим коэффициентом избытка воздуха а, необходимого для сжигания топлива и разбавления топочных газов до температуры смеси см = 300 °С. Значение а находят из уравнений материального и теплового балансов. [c.163]

    Об экономичности сжигания топлива судят по коэффициент, избытка воздуха. Для его нахождения отбирают пробы тс ночных газов. Места отбора проб рассредотачивают по всем газовому тракту (около горелок, в нескольких местах топки, г. конвекционной шахте, в борове). Анализ проб производят аппаратами Орса. Для более совершенного контроля горения топлива используют электрические газоанализаторы, автоматически определяющие состав топочных газов и дающие показания процентного содержания (по объему) в них СО2 и отдельно СО + Из. Чем больше концентрация СО2 и меньше содержание СО + Нг в газах, тем с меньшим избытком воздуха сжигается топливо и тем лучше и полнее оно сгорает. Наличие некоторого количества несгоревших СО - - На объясняется недостатком воздуха в топливе. Итак, наиболее рациональн(. топливо будет сжигаться при максимальном содержании СО2 и полном отсутствии O-f Но в дымовых газах. [c.105]

    Коэффициент теплоотдачи радиацией газов зависит от средней температуры газового потока и степки труб, от концеитрации трехатомных газов, являющейся функцией коэффициента избытка воздуха, от эффективной толщины газового слоя. Значения коэффициента теплоотдачи радиацией газов составляют от 7 до 21 вт1м X X °С или от 6 до 18 ккал/м . ч. °С. [c.128]

    По табл. 1V-3 для газов такого состава находим коэффициент избытка воздуха а=1,35, коэффициент разбавления сухих продуктов сгорания Л=1,37  [c.133]

    Выделим произвольный элементарный объем регенератора У. Температуру в нем обозначим Т, концентрацию кислорода — С, содержание кокса на катализаторе — gк. Пусть, кроме того, общий поток кислородсодержащего газа (воздуха) в регенератор Св, содержание в нем кислорода С , температура потока на входе Гв, теплоемкость с . Для дымовых газов используем те же обозначения, но с индексом г . Поток катализатора обозначим бк, его теплоемкость Ск- Коэффициенты теплопередачи от реагирующей смеси к пароводяной смеси (в змеевике) с температурой Тз обозначим к наружному воздуху с температурой Т — К , поверхность змеевиков — 5з, наружная поверхность аппарата — н- [c.107]

    Изменение коэффициента избытка воздуха а зависит от заданного содержания SOj в печном газе, увеличение же а ведет к снижению теплового к. п. д. процесса. [c.41]

    Коэффициент полезного действия печи (к. п. д.), представляющий собой отношение количества тепла, полезно использованпого в печи, к общему количеству тепла, внесеппого топливом. Коэффициент полезного действия печи зависит главным образом от коэффициента избытка воздуха и температуры уходящих дымовых газов. Обычно к. п. д. трубчатых печей колеблется в пределах 0,60— 0,80. [c.104]

    Печь состоит из 5 камер камеры горения, приготовления теплоносителя, смешения сыпучего материала с раскаленными газами, реакционной и осадительной. В камере горения осуществляется горение газовоздушной смеси, предварительно подготовленной в двухпроводной горелке. Сжигание природного газа с коэффициентом избытка воздуха а 1 дает возможность получить восстановительную газовую среду. [c.105]

    В топку концентратора серной кислоты подают газ Ставропольского месторождения. Состав газа (в объемных долях) СН4 0,98, СгНб 0,004, СзНв 0,002, N2 0,013, СО2 0,001. Рассчитать объем воздуха, необходимого для сжигания 1 м газа, и объем продуктов сгорания при коэффициенте избытка воздуха, равном 2. [c.138]

    Сжигание производится с коэффициентом использования воздуха а г= 0,95 для предотвращения появления кислорода в теплоносителе. Дымовые газы до требуемой температуры 1200 °С обогреваются паром (0,3 МПа) и его расход составляет 1800 кг/ч. Расход природного газа — 110 м /ч, а расход воздуха — 100 м /ч. Теплоноситель состоит из СОз, HjO, Nj и некоторого количества СО, Hj и СН4. Температура теплоносителя регулируется изменением в нем количества пара. [c.243]

    Теплоотдача н камере радиации в большой степепи зависит от температуры поглощающей среды. Наиболее высоких телшератур поглощающая среда может достигать в неэкранировапной топке, т. е. в том случае, когда все тепло, выделенное топливом, идет только на нагрев продуктов горепия (максимальная температура горения). В экранированных топках температура поглощающей среды всегда ниже этой предельной температуры н достигает некоторого равновесного значения, находящегося в интервале между максимальной температурой горения и температурой газов на выходе из топки. Эта равновесная температура, названная средней эффективной температурой среды, тем ниже, чем больше степень экранирования топки и чем ниже коэффициент избытка воздуха. [c.117]

    Основной характеристикой трубчатой печи считается коэффициент полезного действия (КПД). КПД трубчатой нечи — это доля теплоты, полезно пспользованпо "[ в печи на нагрев нефтепродукта. При полном сгорании топлива КПД печи зависит от ее конструкции, потерь теплоты с уходящими дымовыми газами и через кладку печи и коэффициента избытка воздуха. КПД трубчатых печей обычно колеблется в пределах 0,60—0,80 и определяется по формуле [c.230]

    Масло по методу LTD испытывают 180 ч на переменном режиме при этом двигатель работает гетырехчасовыми циклами 3 ч при температуре охлаждаюшей ж ч кости на выходе из двигателя 49 °С, затем 1 ч — при 93 °С. Частота вращения коленчатого вала 1800 об/мин расход топлива 2,1—2,2 кг/ч коэффициент избытка воздуха 1,0 прорыв газов в картер 560 л/ч вакуум в картере 130—370 Па объем масла, заливаемого в картер перед началам испытания, 0,9 кг. [c.134]

    Исследованиями на установке ДК-2 с 1)ц=120 мм и Оср = 5- 8 м/с со свободно движущимися поршнями, выполненными в Институте газа Академии Наук УССР, установлена зависимость между параметрами конца сжатия (рс и Тс) и пределами самовоспламенения газовоздушной смеси различного состава, оцениваемого коэффициентом избытка воздуха а. При этом установлено, что метано-воздушные смеси с а= l,03-f-l,06 воспламеняются при незначительных рс и Тс- Чем выше начальная температура метано-воздушной смеси, тем при более низком давлении рс происходит ее самовоспламенение. Для предотвращения самовоспламенения и детонационного сгорания предлагается обеднять горючую смесь и снижать температуру заряда в начале сжатия. Этому требованию хорошо удовлетворяет внутреннее охлаждение заряда при подаче в поток продувочного воздуха охладителя. [c.227]

    Кроме показателя дымности отработавших газов (в единицах шкалы дымомера Хартридж , оценочными показателями работы установки ОЦУ ЯМЗ-236 при определении дымности являются удельный индикаторный расход топлива, суммарный коэффициент избытка воздуха и температура отработавших газов. Допускаемые расхождения в определении дымности отработавщих газов на сравниваемых режимах испытаний эталонного топлива не должны превышать 2 единицы шкалы дымомера Хартридж . [c.97]

    Принцип форкамерно-факельного зажигания заключается в том, что воспламенение рабочей смеси в цилиндре осуществляется не искрой свечи, а факелом пламени, образующимся при сгорании небольшого количестаа обогащенной смеси в особой форкамере, соединенной с основной камерой сгорания несколькими каналами. Объем форкамеры составляет всего лишь 2 —3% от объема основной камеры сгорания. В форкамере расположены свеча зажигания и небольшой дополнительный впускной клапан, открывающийся одновременно с основным впускным клапаном общим приводом (рис. 15). Через дополнительную впускную систему в форкамеру подается обогащенная смесь, обеспечивающая наиболее благоприятные условия воспламенения и развития начального очага горения. После воспламенения смеси в форкамере быстро возрастает давление, и продолжающие догорать газы выбрасываются через отверстия в основную камеру, где после очень небольшого периода задержки юбедненная смесь воспламеняется практически одновременно в целом ряде точек на периферии факела. Такое энергичное воспламенение смеси, дополнительно турбулизированной факелом, приводит к тому, что в цилиндре оказываются способными гореть с достаточно высокими скоростями сильно обедненные смеси с коэффициентом избытка воздуха а = 1,7—1,8 [181.  [c.59]

    В качестве топлива обычно используется топочный мазут (котельное топливо) или газ, подаваемые в топку печи посредством форсунок, установленных в камере радиации. С целью уменьшения коэффициента избытка воздуха форсунки в ряде печей ус1анавливают в карборундовых муфелях, которые катализируют процесс горения и уменьшают длину факела. Для интенсивного и полного сг(У )ания жидкое топливо, вводимое в печь, должно быть подвергнуто однородному и тонкому распыливанию. Недостаточно тонкое распыливание топлива ухудшает условия его горения, удлиняет факел и приводит к химической неполноте сгорания топлива. [c.87]

    По форм5 ле (6. 22) определяем теплосодержанпе дымовых газов, образующихся при сгорании 1 кг газа, для различных температур при коэффициенте избытка воздуха а = 1,1. [c.100]

    Коэффициент полезного действия печей показывает, насколько эффективно используется тенлО , полученное при сжигании топлива. При полном сгорании топлива к.и.д. зависит, главным образом, от коэффициента избытка воздуха, температуры уходящих топочных газов, а также от состояния теиловой изоляции печи. Снижение коэффициента избытка воздуха, максимальная утилизация теила отходянщх тоиочных газов способствуют повышению к.и.д. печи. Значения к.и.д. иечей находятся в пределах 0,6—0,83. [c.93]

    Коэффициент полезного действия численно равен той чу ти тепла, иолученного при сжигании топлива, которое использовано в нечн на нагрев нефтепродукта. При полном сгорании топлива к.п.д. печи зависит от ее конструкции, коэффициента избытка воздуха (иоказывающего, во сколько раз больше подано в печь воздуха, чем это необходимо для полного сгорания топлива), температуры дымовых газов, покидающих печь, а также от состояния тепловой изоляции печи. При равных мощностях нагревателей он выше для печей с беспламенными панельными горелками ввиду меньших значений коэффициента избытка воздуха и поверхности кладки. Для трубчатых печей к.п.д. колеблется в пределах 0,60—0,85. [c.129]

    Эффективное применение топлива предполагает сочетание рационального метода сжигания того или иного вида топлива с максимальным использованием полученного теила. К.п.д. печей во многом определяется потерями тепла с уходящими топочными газами и химическим недожогом. Потери тепла с газами зависят от их температуры, коэффициента избытка воздуха в топке и присосов холодного воздуха по газовому тракту. Потери тепла от химического недожога наблюдаются ири наличии в уходящих газах несгоревшего в тоике метана, водорода и оксида углерода. Основная нрпчнпа химического недожога топлива — недостаточное количество воздуха, подаваемого в горелки. [c.112]

    Низкотемпературная коррозия шеевиков и дымовых труб печей продуктами сгорания топлива. При сжигании сернистого топлива в топочных газах появляется значительное количество серного ангидрида, сероводорода, диоксида углерода, водяных паров, кислорода и других компонентов, вызывающих интенсивную низкотемпературную коррозию трубчатого змеевика И дымовой трубы. Особенной агрессивностью коррозионного воздействия отличается серный ангидрид. Его образование зависит от используемого для сжи1 ания топлива избытка воздуха. В случае неправильной эксплуатации горелок или при нарушении герметичности топки увеличивается поступление воздуха в печь, что приводит к возрастанию коэффициента избытка воздуха до очень высоких значений (1,5—2,0) и усилению коррозии. Активность влияния серного ангидрида на металл значительно увеличивается при каталитическом действии пятиоксида ванадия в присутствии водяного пара, подаваемого на распыление топлива и образуемого при его сжигании. [c.155]

    Как показали исследования Института газа АН УССР, при сжигании газов с коэффициентом избытка воздуха а =1,05— 1,15 оксид углерода отсутствует. [c.292]

    Х13Н4Г9 наблюдается, как и для углеродистых сталей, уменьшение скорости окисления с уменьшением коэффициента расхода воздуха (т. е. окислительной способности атмосферы), для хромоникелевых сталей и нихрома скорость окисления уменьшается в увеличением коэффициента расхода воздуха а. Во втором случае скорость окисления сплавов определяется, с одной стороны, окислительной способностью газовой среды и, с другой — защитными свойствами образующихся окисных пленок, которые возрастают с увеличением содержания хрома в сплавах и окислительной способности газовой среды. Электронографическое исследование позволило объяснить различие в поведении различных сплавов при их нагреве в одинаковых условиях и каждого при нагреве в различных атмосферах (см. рис. 93) структурным составом образующихся на их поверхности окисных пленок. Этот эффект уменьшения окисления металла с увеличением окислительной способности газа находит практическое использование в заводской практике. [c.134]


Смотреть страницы где упоминается термин Коэффициент газов в воздухе: [c.125]    [c.324]    [c.100]    [c.114]    [c.135]    [c.73]    [c.261]   
Краткий справочник физико-химических величин Издание 8 (1983) -- [ c.7 , c.57 ]




ПОИСК





Смотрите так же термины и статьи:

Коэффициент воздуха



© 2025 chem21.info Реклама на сайте