Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ионные красители

    При адсорбции из растворов, наряду с поглощением нейтральных молекул, может происходить и адсорбция ионов, содержащихся в растворе. Это приводит к некоторым своеобразным явлениям. Например, основной (по своим химическим свойствам) краситель, у которого окрашенный ион заряжен положительно, адсорбируется преимущественно на электроотрицательных (кислотного характера) адсорбентах, и наоборот. Подобные процессы называются полярной адсорбцией и обычно сопровождаются явлением обмена ионами ионного обмена) между адсорбентом и раствором — явле нием, называемым обменной адсорбцией. Так, метиленовая синяя — основной (по химическим свойствам) краситель, адсорбируется отрицательно заряженными гелями, в частности гелем кремневой кислоты. При этом, однако, на кремневую кислоту переходит лишь положительно заряженный ион красителя, а отрицательный ион (ион хлора) остается в растворе. Компенсация зарядов этих анионов достигается тем, что из кремневой кислоты переходит в раствор ион натрия, который в небольшом количестве почти всегда содержится в геле кремневой кислоты при обычных способах его приготовления. [c.372]


    Величины ККМ, определенные для одного и того же вещества различными методами, обычно не совпадают. Это объясняется различием условий определения, зависящих от специфики метода, — наложением электрического поля в методе электропроводности, влиянием ионов красителя-индикатора и т. д. [c.123]

    Подобное явление могут вызвать и большие органические ионы красителей или алкалоидов. [c.91]

    На рис. Н-5—11-8 представлены рис. 11-8. Изотермы адсорб-изотермы сорбции различных красите- цни кислотного черного из лей из водных растворов на свеже-осажденных гидроксидах алюминия и железа (2). железа при квазиравновесии, демонстрирующие различный характер удаления красителей из водных растворов. Дисперсные красители синий К, желтый 2К, сине-зеленый и прямой коричневый КХ коагулируют совместно с гидроксидами алюминия и железа. Красители, слабо ассоциирующие в водных растворах (активный ярко-красный 5 СХ, активный ярко-голубой, кислотный зеленый антрахиноновый, кислотный алый) [26], сорбируются на осадках гидроксидов без образования собственной твердой фазы. Изотермы сорбции активного золотисто-желтого КХ, кислотного хромового красного, кислотного черного, прямого бордо и прямого голубого имеют ступенчатую форму, обусловленную ассоциацией органических ионов на поверхности раздела фаз [27]. Горизонтальные участки на кривых изотерм сорбции, т. е. область насыщения, указывают на то, что при небольших равновесных концентрациях идет процесс сорбции ионов красителей или их ассоциатов. При высоких равновесных концентрациях изотермы сорбции, приведенные на рис. П-5, П-7 и П-8, не имеют предела насыщения, т. е. по мере укрупнения ассоциатов происходит их совместная коагуляция с гидроксидами алюминия и железа. [c.27]

    Когда в коллоидные системы вводят порциями электролиты, содержащие многозарядные ионы с зарядом, противоположным заряду частицы, золь сначала остается устойчивым, затем в определенном интервале концентраций происходит коагуляция, далее золь снова становится устойчивым и, наконец, при высоком содержании электролита опять наступает коагуляция, уже окончательная. Подобное явление могут вызывать и объемные органические ионы красителей или алкалоидов. [c.331]

    Фиксация красителя волокном. Фиксация является последней стадией процесса крашения и осуществляется за счет тех или иных связей. Предполагается, что краситель удерживается на волокне как физическими, так и химическими силами взаимодействия. Доля участия этих сил различна для разных волокон и классов красителей, В зависимости от сил, фиксирующих краситель на волокне, в широких пределах зависит прочность окрасок к действию света, мокрых обработок, к трению и т, д. Все виды связей, возникающих между молекулами или ионами красителя и волокном, условно можно разделить на следующие  [c.268]


    Это явление наблюдается при введении в коллоидные системы электролитов, содержащих многовалентные ионы с зарядом, противоположным заряду частицы. Оно заключается в том, что при добавлении к отдельным порциям золя различных, все возрастающих количеств электролитов золь сначала остается устойчивым затем в определенном интервале концентраций происходит коагуляция, далее золь снова. становится устойчивым. и, наконец, при высоком содержании электролита. опять наступает коагуляция, уже окончательная. Подобное явление могут вызвать и большие органические ионы красителей или алкалоидов. [c.300]

    Изменения окраски прн последовательной диссоциации молекулы комплексона находятся в соответствии с концепцией о том, что симметрично построенные ионы красителя (НдЬ +, НгЬ , Ь ) имеют наибольшую глубину [c.259]

    Таким образом, можно сделать вывод, что наличие электроотрицательных групп в сочетании с пространственными затруднениями у органических катионов повышает тенденцию к образованию ковалентных структур вместо обычных ионных красителей. [c.252]

    Связи в комплексах с лигандами — как с ионами, так и с нейтральными молекулами, — часто прочнее других химических связей. Изображение одних связей в комплексе сплошной чертой, а других — пунктиром или стрелкой, говорит только о происхождении этих связей, а не об истинном состоянии валентных электронов в случае одинаковых лигандов различное изображение связей неверно, а при разных лигандах о расположении образующих связь электронов (точнее — электронной плотности) мало что известно. Поэтому в современных работах предпочитают изображать комплексные связи обычной чертой. В комплексах типа Кислотного синего 23М лигандами являются гидрокси- и азогруппы красителя, также, по-видимому, молекулы воды и гидроксильные ионы (точные аналитические данные в большинстве случаев отсутствуют). При крашении молекулы воды замещаются на КНг-и ОН-группы кератина шерсти и других протеиновых волокон, образуя более прочные, чем вода, связи с хромом. В Кислотном синем 23М во внутренней сфере комплекса (в квадратных скобках) Сг + связан с двумя ионизированными гидроксильными группами азокрасителя 0 в комплексе участвуют, кроме атома азота азосвязи, две нейтральные молекулы воды и один гидроксил-ион краситель содержит еще две группы 80з, поэтому общий заряд внутренней сферы комплекса равен  [c.287]

    Заряд иона красителя [c.126]

    Зависимость сорбции красителя волокном от температуры чаще всего характеризуется тепловым эффектом и изменением энтропии этого процесса. Тепловой эффект с определенными ограничениями характеризует прочность связи красителя с функциональными группами волокнообразующего полимера. Эти ограничения обусловлены тем, что тепловой эффект адсорбции включает не только те тепловые изменения в системе, которые соответствуют образованию какой-либо связи между красителем и полимером, но и ряд других составляющих, таких, как тепловой эффект дегидратации волокна и молекул или ионов-красителя, разрыва межмолекулярных связей в волокне, ассоциации и распада ассоциатов красителей. [c.60]

    Часто наблюдалось, что спектр водорастворимого красителя, введенного в раствор ПАВ, изменяется с изменением концентрации последнего. На этом явлении основан один из методов определения ККМ. В растворах ионогенных ПАВ изменение цвета красителя обусловлено взаимодействием противоположно заряженных ионов красителя и ПАВ если же ионы этих веществ заряжены одноименно, они не взаимодействуют друг с другом [c.178]

    И изменения цвета не наблюдается. В растворах неионогенных ПАВ взаимодействие между ионом красителя и молекулой ПАВ может происходить при любом знаке заряда иона красителя, но это взаимодействие слабее и поэтому изменение цвета красителя менее резко (см. табл. 28). [c.179]

    Метод Фаянса (титрование с адсорбционными индикаторами). В процессе титрования поверхность осадка имеет некоторый заряд (см. 1фавила адсорбции в разд. 9.1.5). Например, при титровании галогенид-ионов раствором нитрата серебра осадок Ag l до ТЭ заряжен отрицательно вследствие адсорбции собственных СГ -ионов. После ТЭ осадок перезаряжается и становится положительно заряженным из-за адсорбции Ag -ионов. Если в растворе присутствуют ионы красителя, имеющие определенный заряд, то они могут служить противоионами и придавать осадку окраску. Например, флуоресцеин — слабая органическая кислота желто-зеленого цвета, диссоциирует с образованием аниона, который адсорбируется на положительно заряженном осадке Ag l после ТЭ. При адсорбции окраска красителя изменяется на розовую (возможно, из-за образования малорастворимого комплекса с ионами серебра). [c.99]

    Коэффициент диффузии в растворе составляет 10 — 10 см /с. Ускорить процесс диффузии можно только путем повышения температуры, вызывающего снижение вязкости раствора, уменьшение степени ассоциации частиц красителя и повышение кинетической энергии молекул или ионов красителя, выделившихся из состава ассоциатов. При использовании водных растворов красителей повышение температуры на каждые 10 °С приводит в зависимости от степени начальной ассоциации красителя к возрастанию скорости его диффузии на 20—30%. [c.53]


    Как отмечалось ранее, гидрофильные органические растворители и текстильно-вспомогательные вещества сольватируют молекулы или ионы красителя, что затрудняет их адсорбционное взаимодействие с волокном. В результате этого как и при повышении температуры адсорбционное равновесие смещается влево, уменьшается сродство красителя к волокну и снижается равновесная накрашиваемость. Если же процесс крашения не доведен до состояния равновесия, то в зависимости от концентрации вспомогательных веществ в красильном растворе можно наблюдать либо повышение, либо понижение накрашиваемости. [c.59]

    Стандартная энтропия крашения характеризует изменение упорядоченности в красильной системе при переходе одного моля красителя в фазу волокна из внешней фазы раствора. В растворе молекулы или ионы красителя гидратированы или сольватированы, но могут свободно перемещаться во всех направлениях и вращаться. Они находятся в состоянии беспорядочного распределения, т. е. в наиболее вероятном состоянии. Попадая в волокно и находясь в адсорбированном состоянии, молекулы красителя располагаются более или менее ориентированно и имеют значительно меньшую свободу движения, что отрицательно сказывается на запасе их кинетической энергии [c.61]

    Наличие в молекулах прямых красителей сульфогрупп обеспечивает их растворимость в воде. В водных растворах они диссоциируют с образованием окрашенных анионов, способных к ассоциации. Присутствие в растворе ионов красителей и их ассоциатов различного состава зависит от температуры раствора, концентрации красителя и нейтрального электролита. [c.95]

    Уравнения (XII. 16) учитывают, как это видно из вывода, лишь кулоновское взаимодействие противоионов с ионами внутренней обкладки и не учитывают специфической адсорбции противоионов под действием некулоновских (вандерваальсовых) сил. Это специфическое взаимодействие, характерное для адсорбции многовалентных ионов, ионов красителей, алкалоидов, ПАВ, рассматривается в теории Штерна (1924). [c.200]

    Проведенные в ЛГУ исследования показали, что подвижность ионов красителей, адсорбированных специфически (слой Штерна), практически равна нулю, подвижность противоионов на поверхности силикатов и окислов несколько понижена, а на поверхности ионных кристаллов (BaS04) — л 100 % от подвижности этих ионов в растворе Uy. Это различие может быть связано с существованием гелеобразного слоя на силикатной поверхности. [c.214]

    При добавлении коагулянта в осадок выпадают красители, ограниченно растворяюгциеся в воде или находящиеся в ней в высокодисперсном состоянии (например, дисперсные красители, не содержащие сульфо- и карбоксильных групп), а также красители, образующие в водных растворах солей ассоциаты с большим фактором ассоциации (fass), значительно возрастающим при введении в раствор электролитов. Ионы красителей, слабо ассоциирующих в водных растворах, например ионы ак- [c.24]

    Неионообменная порошковая целлюлоза применяется в качестве носителя при распределительной хроматографии и электрофорезе на колонках и в слоях. Целлюлоза используется для хроматографического разделения сахаров, глицеридов, спиртов, фенолов, аминов, карбоновых и аминокислот, пептидов, белков, нуклеиновых кислот, уроновых кислот, липидов, алкалоидов, антибиотиков, гормонов, ферментов, витаминов, гербицидов и инсектицидов, неорганических ионов, красителей, углеводородов и других веществ. Применяется также для электрофореза белков, пептидов, аминокислот, нуклеиновых кислот, нуклеотидов. [c.127]

    Наблюдения Гартлея [36], а также Шеппарда и Геддеса [37], что флуоресценция некоторых красителей значительно изменяется в зависимости от того, находятся ли они в растворе или поглощены мицеллами, были успешно использованы в работах Кор-рина и Гаркинса [38], Кольтгофа и Стрикса [39]. Если при постоянной концентрации красителя (около 10 М) постепенно уменьшать концентрацию коллоидного электролита, то по достижении ККМ окраска раствора заметно изменяется вследствие изменения спектра поглощения красителя. Для определения ККМ анионных ПАВ можно использовать пинацианолхлорид и родамин С, в случае катионных ПАВ—небесно-голубой ГГ, эозин, флуоресцеин и дихлорфенолиндофенол. Описаны и другие красители, пригодные для этой цели [40, 41 ]. На ККМ влияет присутствие ионов красителя [42], но влияние это невелико из-за очень малого количества используемого красителя. Если тщательно определить ККМ (по изменению первоначальной окраски) в условиях постепенного уменьшения концентрации красителя до нулевого ее значения, получаемого экстраполяцией, то такие значения ККМ не отличаются от данных непосредственных ее определений. При этом точность оценки положения конечной (экстраполируемой) точки можно увеличить, если использовать серию растворов, концентрации которых близки к ККМ и лежат по обе стороны от нее. При этом конечные точки в течение получаса постепенно сдвигаются в область более концентрированных растворов [43, 44]. Недостатком этого метода является неопределенность результатов измерений, получаемых при значительном содержании в системе солей или спиртов. Преимущество же этого метода заключается в его большой чувствительности при оценке небольших изменений ККМ (например, в смесях ПАВ) [44]. [c.19]

    Наличие в волокнистых материалах микрокристаллических участков с различной степенью ориентации и уплотнения макромолекул является важным фактором, определяющим реакционную способность, упругоэластические свойства и прочность различных волокон. Аморфные, менее уплотненные участки играют важную роль в процессах крашения и печатания текстильных материалов они обеспечивают возможность диффузии красителя в толщу волокна. Плотные микрокристаллические области недоступны для молекул или ионов красителей. В процессе эксплуатации текстильных материалов вследствие наличия аморфных и кристаллических участков в микрофибрнллах происходит перераспределение местных перенапряжений и тем самым повышается износостойкость волокон. [c.10]

    Таким образом, единый цикл физико-химических явлений, обусловливающих доставку в волокно молекул красителя и фиксирование их активными группами волокнообразующего полимера, при крашении по непрерывным схемам нарушается. На стадии пропитывания волокнистого материала в основном происходит принудительное перемещение молекул или ионов красителей из пропиточной ванны в раствор, заполняющий межво-локонные пространства, и лишь в очень незначительной степени начинается заторможенная адсорбцией диффузия красителя в субмикроскопических порах волокна. При увеличении продолжительности пропитки или при инициировании на этой технологической стадии адсорбционно-диффузионных процессов степень проникновения красителя внутрь волокна может существенно возрасти. В основном же диффузионные процессы и фиксирование красителя в волокне протекают на стадии тепловой обработки после пропитки и отжима текстильного материала. [c.73]


Смотреть страницы где упоминается термин Ионные красители: [c.221]    [c.345]    [c.340]    [c.230]    [c.181]    [c.24]    [c.24]    [c.24]    [c.81]    [c.131]    [c.47]    [c.51]    [c.51]    [c.52]    [c.60]   
Аналитическая химия синтетических красителей (1979) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Герасимов, Л. Ф. Яхонтова, Б. П. Брунс. Распределение красителей внутри зерен карбоксильных катионитов при различных условиях ионного обмена

Жидко-жидкостная хроматография ионных красителей

Жидкостная хроматография при высоких давлениях ионные красители

Определение иодида в виде ионного ассоциата трииодида с органическими красителями

Опыт 18. Обнаружение иона железа(III) гексацианоферратом(П) калия — 54. Опыт 19. Разделение и одновременное обнаружение ионов железа (III), никеля) и меди(П)—55. Опыт 20. Разделение смёси красителей капельным методом

Твердо-жидкостная хроматография ионных красителей

области ионных ассоциатов с трифенилметановыми красителями



© 2025 chem21.info Реклама на сайте