Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Адсорбция тепловые эффекты

    Теплота адсорбции. Тепловые эффекты химической адсорбции могут быть велики и близки к тепловым эффектам химических реакций. Вследствие этого образующаяся адсорбционная связь оказывается весьма прочной и удаление адсорбированных веществ с поверхности часто возможно лишь при очень высоких температурах. [c.39]

    Тепловые эффекты. Адсорбция является экзотермическим процессом. При физической адсорбции газов тепловые эффекты имеют примерно тот же порядок, что и теплоты конденсации, т. е. не- [c.204]


    Зависимость хемосорбции от концентрации или давления часто описывается уравнениями типа уравнения Лэнгмюра (227.6) или (221.6а). Как и при физической адсорбции, тепловой эффект хемосорбции зависит от степени заполнения поверхности. Он значительно превышает тепловой эффект физической адсорбции и соответствует по порядку величины тепловому эффекту химической реакции. В табл. 34 приведены начальные теплоты хемосорбции на различных катализаторах. [c.643]

    В случае физической адсорбции силы взаимодействия между адсорбированными молекулами и твердым телом имеют электростатический характер (вандервааль-совские силы и силы электростатической поляризации). Физическая адсорбция — экзотермический процесс. Тепловой эффект этого процесса близок к теплоте конденсации и равен 0,2—8 ккал/моль. Состояние равновесия при физической адсорбции достигается очень быстро даже при низких температурах. С увеличением температуры при состоянии равновесия -количество адсорбируемого вещества уменьшается, а выше критической температуры адсорбированного компонента вообще очень мало. [c.274]

    Далеко не полный перечень упомянутых неоднородностей вносит значительные осложнения в однозначное истолкование механизмов адсорбционных и каталитических процессов. Обычно эти осложнения учитываются введением функций распределения участков поверхности по соответствуюш пм характеристикам (теп-лотам адсорбции, тепловым эффектам химических поверхностных реакций, энергиям активации хемосорбции и катализа). Иногда эффекты, воспринимаемые как следствие неоднородностей в кинетике и статике адсорбции и в кинетике каталитических реакций, объясняются как результат некоторого отталкивательного взаимодействия между адсорбированными молекулами [141. Однако до сих пор не выяснен вопрос о реальности и природе постулируемых сил отталкивания. Возникает проблема идентификации природы неоднородностей, разработки приемов их распознавания, позволяющих отличать географические неоднородности от влияния сил отталкивательного взаимодействия. [c.12]

    Исследователей, занимающихся проблемой лиофильности дисперсных систем, всегда интересовало, адсорбция скольких молекулярных слоев воды сопровождается заметным тепловым эффектом и какой вклад в суммарную интегральную теплоту смачивания вносит тепло, выделяющееся при адсорбции первого и последующих слоев воды. Выбор в качестве объектов исследования слоистых силикатов с расширяющейся структурной ячейкой, для которых характерно ступенчатое заполнение межслоевых промежутков, комплексное применение для их исследования рентгеновского, адсорбционного и термохимического методов анализа позволяет ответить на эти вопросы. [c.32]


    Закон Гесса широко применяется при различных термохимических расчетах он дает возможность вычислить тепловые эффекты процессов, для которых экспериментальные данные отсутствуют, а во многих случаях — и для таких, для которых они не могут быть измерены в нужных условиях, или когда процессы еще не осуществлялись. Это относится как к химическим реакциям, так и к процессам растворения, испарения, кристаллизации, адсорбции и др. Однако, применяя данный закон, следует строго соблюдать условия, лежащие в его основе. [c.192]

Рис. III. 8. К определению теплового эффекта адсорбции. Рис. III. 8. К <a href="/info/1332962">определению теплового эффекта</a> адсорбции.
    Особенностью метода является возможность одновременного пол(учения также сведений по тепловому эффекту адсорбции п десорбции и его изменению в зависимости от условий процесса. [c.102]

    Образование комплекса — экзотермический процесс. По данным [3], теплота комплексообразования, отнесенная к числу атомов углерода в молекуле нормального парафина, составляет около 6,7 кДж (1,6 ккал), что вдвое больше теплоты плавления этих углеводородов и значительно меньше теплоты их адсорбции на твердой поверхности. Отсюда следует, что тепловой эффект комплексообразования есть результат экзотермического процесса адсорбции и эндотермического процесса перехода тетрагональной структуры карбамида в гексагональную в момент комплексообразования. Теплота образования комплекса складывается из теплот трех процессов преодоления сил межмолекулярного сцепления молекул парафинового углеводорода, численно равных теплоте испарения ориентации молекул карбамида в отношении молекул парафиновых углеводородов (экзотермический процесс) превращения кристаллической структуры карбамида из тетрагональной в гексагональную (эндотермический процесс). [c.201]

    Решение вопросов промышленной сорбции требует всесторонних знаний по системе н-парафин-цеолит. В частности, весьма важным является знание тепловых эффектов на стадиях адсорбции и десорбции, исследование которых позволяет вскрыть особенности процесса. Теплота адсорбции, зависящая от природы адсорбата, его молекулярной массы, степени заполнения им адсорбционного пространства и др., определяет характер связи молекул с поверхностью адсорбента. Имеющиеся в литературе сведения о тепловых эффектах основных стадий адсорбционного процесса немногочисленны [-1-6], причем и в этих работах рассмотрены отдельные аспекты. [c.8]

    Для правильного понимания этого процесса необходимо учесть, что различные атомы поверхностного слоя адсорбента находятся отнюдь не в одинаковых условиях. Поверхность твердого тела, а в особенности хорощего адсорбента, не является гладкой, а имеет многочисленные ультрамикроскопические выступы и углубления. Степень насыщенности валентных сил атомов, расположенных на различных участках поверхности, различна, а следовательно, неодинакова и способность к взаимодействию с атомами и молекулами окружающего газа. Наиболее активные участки поверхности особенно энергично адсорбируют молек-улы данного газа или пара, причем вид газа, его химические свойства имеют первенствующее значение, т. е. адсорбция в данном случае специфична. Адсорбция при этом сопровождается выделением значительного количества теплоты, далеко превосходящего теплоты конденсации и отвечающего тепловым эффектам химических процессов. Такую адсорбцию называют химической адсорбцией. [c.371]

    В зависимости от значения и знака тепловой эффект реакции в растворе или на поверхности может более или менее сильно отличаться от теплового эффекта в газовой фазе. Значения теплот сольватации и адсорбции карбоний-ионов в настоящее время неизвестны. Приближенные теоретические расчеты показывают, что теплоты сольватации весьма значительны и в данном растворителе тем больше, чем меньше число атомов углерода содержит ион — чем меньше радиус иона (табл. 4.6). [c.170]

    Учитывая меньшую интенсивность, полную обратимость и меньший тепловой эффект, можно утверждать, что адсорбция в этой области давлений является чисто физическим процессом. Именно в этом случае неодинаковая способность к адсорбции разных газов определяется в первую очередь неодинаковой способностью их к конденсации другие же влияния, связанные с индивидуальной особенностью газов, обычно проявляются слабо. [c.372]

    Электронная теория объясняет зависимость теплового эффекта хемосорбции от величины адсорбции и ряд других закономерностей катализа. Однако без использования основных положений квантовой теории химической связи нельзя объяснить специфику взаимодействия катализатора с конкретной молекулой. Электронная теория катализа описывает состояние катализатора. Квантовая теория химической связи описывает взаимодействие молекул, осуществляющееся через взаимодействие атомов. Рассматривая взаимодействие молекулы субстрата с поверхностью катализатора, завершающееся возникновением химической связи, необходимо определить реакционные центры, т. е. атомы в молекуле и на поверхности катализатора, которые могут взаимодействовать. При определении реакционных центров и качественной оценке энергии взаимодействия между ними можно руководствоваться основными положениями метода возмущенных орбиталей (см. 214), положением о необходимости соответствия взаимодействующих орбиталей. [c.659]


    Процессы химической технологии, основанные на применении адсорбентов в неподвижном слое при больших концентрациях адсорбата, отличаются существенным тепловым эффектом за счет выделяющейся теплоты адсорбции. [c.239]

    Карбоний-ионные реакции всегда протекают или в жидкой фазе или на поверхности твердого катализатора, и тепловые эффекты реакций отличаются от приведенных нами в результате сольватации ионов (при жидкофазных реакциях) и адсорбции (при реакциях на твердой поверхности). Тепловые эффекты газофазных реакций [c.170]

    Теплоты адсорбции карбоний-ионов, обусловленные взаимодействием с противоионами (анионами) на поверхности катализатора, также должны уменьшаться с ростом радиуса иона. Так как при изомеризации карбоний-ионов их радиус практически не изменяется, можно считать, что теплоты реакций изомеризации не отличаются от приведенных для газофазных условий. Для всех других реакций карбоний-ионов большая теплота сольватации или адсорбции малых ионов должна приводить к соответствующему изменению тепловых эффектов. Так, распад ионов должен быть менее эндотермичен, чем по данным на стр. 166—167, и различие тем сильнее, чем меньше ион, образующийся при распаде. [c.171]

    Тепловые эффекты скоростей стадий Л0у были рассчитаны из извест-ньк величин диссоциативной адсорбции кислорода на углероде и тепловых эффектов суммарных реакций, в ходе которых образуются оксиды углерода [см. гл. 2, уравнения (11) и (2.2)]. Первая величина равна 83,7 кДж/моль, тепловой эффект образования СО2-З94 кДж/моль, образования СО-109,5 кДж/моль [61]. Тогда йп = 83,7, 2 = 394, <2р = 67,6, Qp = Ъ (размерность всех б -кДж/моль) бр = 303 кДж/моль взята из [153], Qp и 2р приняты равными нулю. [c.75]

    Теплопроводность зерен катализатора имеет большое значение, так как способствует выравниванию температуры в слое и уменьшению диапазона температур (А ) адиабатических процессов. В процессах с большим тепловым эффектом желательно применять теплопроводный катализатор для устранения местных перегревов, приводящих к понижению выхода продукта, химическим потерям исходных веществ, понижению активности контактной массы. В эндотермических процессах крупнозернистый катализатор с низкой теплопроводностью может снизить активность вследствие прекращения активированной адсорбции в глубине зерна, капиллярной конденсации паров реагентов в порах, изменения химиче-, ского состава и т. д. [c.60]

    Г.А. Кондратьева, М.Н. ид. Исследование тепловых эффектов при адсорбции н-парафинов цеолитом SA в динамических условиях. .... ......... ......... 8 [c.141]

    При адсорбции из растворов возникают адсорбционные силы, большие, чем силы межмолекуляр-ного иритяжения. Различие в величине этих сил и обусловливает возникновение теплоты адсорбции. Тепловой эффект адсорбции, протекаю- [c.184]

    Для такой адсорбции характерны все че рты химического взаимодействия, т. е. необходимость энергии активации, направленность и насыщенность сил и большой тепловой эффект, близкий к теплотам химических реакций. Так, например Н. А. Шилов с сотрудниками [56—59], а также Т. Рид и Р. Уиллер [60] установили, что наряду с чисто физической адсорбцией кислорода на графите, наблюдающейся при комнатных температурах и сопровождающейся выделением примерно 4 ккал1моль, при высоких температурах имеет место химическая адсорбция, тепловой эффект которой весьма значителен (100—200 ккал моль) и превосходит для первых порций О2 даже теплоту горения графита до СО2. Позднее Р. Юц и сотрудники [61], воспользовавшись тем, что физически адсорбированный кислород парамагнитен, а химически адсорбированный слабо диамагнитен, и сочетая измерения магнитной восприимчивости с общей адсорбцией, определили раздельно, сколько кислорода адсорбируется на угле физически и химически. При этом оказалось, что чем выше температура предварительной эвакуации угля, тем больше химическая адсорбция кислорода при 20° С. [c.165]

    При физической адсорбции молекулы адсорбтива не вступают с молекулами адсорбента в химическое взаимодействие. Адсорбируемые молекулы сохраняют свою индивидуальность. Теплота адсорбции (тепловой эффект физичесюй реакции поглощения) относительно невелика примерно до 63 кДж/моль. Малые значения величин теплоты и времени адсорбции позволяют организовать процесс физической адсорбции в режиме обратимости, т.е. проводить последовательно операции адсорбции и восстановления адсорбента (процесс десорбции). [c.193]

    Подведём итоги и сделаем некоторые выводы из рассмотренного случая адсорбции полярных молекул на гранях кристаллов с ионной решёткой. Подсчёт даёт для 1/дц величину того же порядка, что и экспериментально наблюдаемые теплоты адсорбции и смачивания. При переходе от адсорбции молекул воды к адсорбции молекул в гомологическом ряду спиртов на одном и том же адсорбенте (Ва304) наблюдается ожидаемый параллелизм между ходом величин электростатической компоненты адсорбционной энергии и наблюдаемыми величинами тенлот смачивания, но нет полного количественного согласия. Теоретически подсчитанная дисперсионная компонента дисп но порядку величины оказалась значительно меньше экспериментально наблюдаемого при адсорбции теплового эффекта. [c.93]

    Существует другой процесс — так называемая хемосорбция,— который экспериментально можно отличить от физической адсорбции. Как правило, это значительно более медленный процесс, чем физическая адсорбция, который часто проявляется по увеличению скоростр реакции с ростом температуры. Хемосорбция обычно необратима. Процесс десорбции протекает очень медленно и требует более высоких температур. Это является следствием более высоких тепловых эффектов, которые сопровождают хемосорбцию они могут быть по порядку величины от 10 до 100 ккал/молъ — как раз в пределах тепловых эффектов химических реакций.  [c.537]

    СКОЛЬКО СОТ калорий на 1 люль. При хемосорбции тепловые эффекты по величине приближаются к тепловым эффектам химических реакций и составляют41 900—419000 кдж/кмоль (10—100 ккал/моль). Так, например, теплота адсорбции кислорода на углероде равна 335 200 кдж/кмоль (около 80 ккал/моль), а теплота сгорания углерода составляет 393860 кдж/моль ккал/моль). В этом случае действительно образуется стабильное соединение и при попытках удалить адсорбат с поверхности путем вакуумирования вместе с кислородом выделяется некоторое количество окиси углерода. [c.205]

    В области малых заполненийХобычно трудно определить малые давления р при разных температурах с нужной для построения изостеры точностью. Поэтому в этом случае предпочтительно определять теплоту адсорбции калориметрически. Впуская последовательно небольшие порции газа (пара) в калориметр с адсорбентом, измеряют выделяюш,ийся тепловой эффект, деля который на соответствующее количество адсорбированного вещества, получают теплоты, близкие к определяемым из изостер дифференциальным теплотам адсорбции. [c.485]

    Кроме таких аналитических применений разделения компонентов смесей на основе различной их адсорбции или различ ной растворимости, газовая хроматография, очевидно, может быть применена и для решения обратной задачи, т. е. для быстрого определения адсорбции и теплоты адсорбции, величины по-. ерхности твердого тела и ее химических свойств или для опре-1еления термсдинамических свойств раствора в неподвижной жидкости и связанных с этими свойствами физико-химических величин (констант равновесия, изотерм распределения, коэффи циентов активности, тепловых эффектов и т. п.). [c.546]

    При погружеппн твердого вещества в чистую жидкость тепловой эффект соответствует теплоте смачивания, а при погружении этого вещества в раствор тепловой эффект складывается из теплот смачивания и адсорбции. [c.79]

    При активации катализатора раствором сернокислого алюминия протекают два процесса — удаление оставшихся примесей и внедрение новых ионов алюминия. При втором процессе происходит не только удаление ионов натрия, но и адсорбция на поверхности ионов алюминия мономолекулярным или полимолекулярным слоем. Во время активации концентрация активирующего раствора сернокислого алюлшния понижается концентрация в объеме резко отличается от концентрации вблизи поверхности, откуда происходит образование новой фазы. Для выравнивания концентраций необходимо энергичное перемешивание. Ввиду малого теплового эффекта реакции температурные условия в процессе активации не имеют существенного значения, но температура не должна быть выше, чем при термообработке. [c.59]

    Следовательно, начальная изостерическая теплота адсорбции равна тепловому эффекту процесса при Р 0. Из зависимости 1пАГад при Г -> О от 1/Т можно найти и ДЯад  [c.641]

    При физической адсорбции энтропия адсорбции многих газов лежит в пределах 80—]00Дж/(моль К). Если принять предельное значение адсорбции Гоо= = 10 моль-см и толщину адсорбционного слоя 5-10 см, то концентрация газа в адсорбционном слое будет равна 10 /5 10 1 = 0,02 моль/см , или 20 моль/л. Если рассматривать газ как идеальный, то уменьшение энтропии газа в результате адсорбции при нормальном давлении газа над адсорбентом будет равно / 1п20 22,4 и 54 Дж/(моль К). Если учесть двухмерное состояние адсорбированного газа, то изменение энтропии будет еще больше. Следовательно, при взаимодействии субстрата с поверхностью катализатора только за счет физической адсорбции изменение энтропии газа Д 5° будет равно 80 Дж/(моль К)- Это равносильно тому, что энергия Гиббса адсорбированного газа, если рассматривать его как идеальный, возрастает примерно на 24 Дж/(моль К), так как при изотермическом сжатии идеального газа ДО + 4- /"Д 5 =0 (см. 71). Тепловой эффект физической адсорбции изменяется в широких пределах. Термодинамические характеристики процесса адсорбции некоторых веществ на саже приведены ниже. [c.641]

    ДЯ — тепловой эффект физической адсорбции АН,— тепловой эффект хемосорб-цни А, А" — радикальные частицы или. атомы X — катализатор [c.642]

    Различие в теплотах сольватации (или адсорбции) карбоний-ионов при использовании различных катализаторов должно приводить к существенному изменению соотношения тепловых эффектов реакций данного карбоний-иона и разных карбоний-ионов в данной реакции. Свойства карбоний-иона, находящегося в паре с про-тивоионом, могут, по-видимому, сильно зависеть от свойств аниона. В системе М---Н---А в зависимости от соотношения основностей (сродства к протону) М и А" локализация протона может быть различной, что должно отражаться на свойствах карбоний-иона. [c.171]

    При физической адсорбции газов тепловые эффекты имеют тот же порядок, что и теплоты конденсации (от —2 до —10 ккал1молъ), а при хемосорбции они приближаются к тепловым эффектам химических реакций и составляют от —10 до —100 ккал/моль. [c.220]

    Нами проведены исследования сорбции высокомолекулярных н-парафинов - додекана, пентадекана, октадекана - при 360-440°С в интервале парциальных давлений 200-6000 Па цеолитом МдА без связующих веществ, синтезированным в ГрозНИИ. Для исследований использована установка проточного типа -модифицированная дериватографическая установка [7], обеспечивающая высоцую воспроизводимость опытных условий, автоматическую непрерывную запись на светочувствительную бумагу экспериментальных данных температуру в слое адсорбента, скорость изменения массы, тепловые эффекты адсорбционно-десорбционных стадий. Описание установки,анализ ошибок измерений, методика проведения исследований, характеристика цеолита иуглеводородов приведены в работе [8]. Адсорбцию н-парафинов цеолитон осуществляли из его смеси с гелием. [c.8]

    Исследование тепловых эффектов при адсорбции н-парафинов цеолите 5А в динамических условиях. Г.А. Кондратьева, М.Н. Фрид в кн. "Технология парафинов и масел . Сб. научн. трудов. М., ДВИИ-ТЭяефтехим, 1985, с.8-16. [c.144]

    Углероды разных видов могут на границе твердое тело — газ физически и химически адсорбировать и десорбировать газовые и жидкие продукты. Физическая адсорбция газов (азот, аргон, 50г) происходит на базисных плоскостях кристаллита углерода теплота адсорбции 8,4—33,6 кДж/моль. В работе [88] утверждается, что адсорбция ЫНз, Нг5, 80г и СОг при низких температурах па базисных плоскостях графитированных саж осуществляется с таким же тепловым эффектом, как и адсорбция инертных газов, т. е. происходит преимущественно физическая адсорбция. Химическая адсорбция осуществляется при взаимодействии НгЗ, О2 и других активных газов с поверхностью углерода п]зи более высоких температурах. Так, установлено [58], что в интервале от —196 до —73 °С поверхность свежеизмельченного графита адсорбирует кислород преимущественно физически при более высоких температурах происходит химическая адсорбция. Как известно, на поверхности неупорядоченного углерода имеются разорва) -пые связи (свободные радикалы), которые могут присоединять кислород, что сопровождается образованием комплексов. [c.57]

    Значения теплот комплексообразования, опубликованные различными авторами, приведены в табл. 3. Наблюдаемая величина теплового эффекта образования комплекса (порядка 1,6 ккал на 1 атом углерода) значительно больше теплоты кристаллических превращений углеводородов, в 2 раза больше теплоты плавления, на /з больше теплоты испарения и в то же время значительно меньше теплоты адсорбции н-парафинов на угле. Это позволило Циммершиду и Диннерштейну [20, 52] считать, что теплота образования комплекса есть разность теплот двух процессов, имеющих место при комплексообразованпи, — изотермического процесса адсорбции и эндотермического процесса смешения молекул карбамида в момент образования продуктов присоединения. [c.31]

    Зависимость, представленная иа pli . III.8, соответствует положительному тепловому эффекту адсорбции, q > О, что указывает на выделение теплоты в процессе адсорбции газов и паров. [c.123]

    Если хемосорбция пропсходи.т с малым тепловым эффектом, то это часто означает, что параллельно идет ироцесс, который трсбусг затраты энергии (например, диссоциация молекул адсорбата иа иоверхности). В то же вре.мя ие всегда можно провести четкую границу между физической и химической адсорбциями, особенно при слабой хемосорбции, так же как вообще между физическим и химическим взаимодействиями. Физическая адсорбция отличается универсальностью и малой специфичностью. Хемосорбция характеризуется специфичностью взаимодействия, приводящего обычно к образованию поверхностного химического соединения. Сильная хемосорбция часто необратима, вместо адсорбированного венхе- ства может десорбироваться другое соединение. [c.125]


Смотреть страницы где упоминается термин Адсорбция тепловые эффекты: [c.537]    [c.233]    [c.241]    [c.17]    [c.11]    [c.7]   
Основы процессов химической технологии (1967) -- [ c.458 ]




ПОИСК





Смотрите так же термины и статьи:

Теплово эффект

Эффект адсорбции



© 2025 chem21.info Реклама на сайте