Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ионная атмосфера заряд

    Форма ионной атмосферы во многом определяется характером распределения зарядов в гранулах и макроионах. Применение теории Дебая — Гюккеля к таким системам ограничивалось пока первым приближением, причем полученные результаты носят качественный характер. Подобное изложение данного вопроса представляется поэтому нецелесообразным, тем более что уравнения, оп сывающие поведение коллоидов и полиэлектролитов, при их ог-ниченной применимости, весьма слолсны и неудобны для проведения расчетов. [c.100]


    Эффект электрофоретического торможения. При наложении на раствор электрического поля ион, рассматриваемый как центральный, и его ионная атмосфера, обладающие обратными по знаку зарядами, движутся в противоположных направлениях. Поскольку ионы гидратированы, то движение центрального иона происходит не в неподвижной среде, а в среде, перемещающейся ему навстречу. Поэтому движущийся ион находится под влиянием дополнительной тормозящей силы (силы электрофоретического торможения), что приводит к снижению его скорости. [c.461]

    Эффект релаксационного торможения. Согласно электростатической теории растворов сильных электролитов ионная атмосфера обладает центральной симметрией. При движении иона в электрическом поле симметрия ионной атмосферы нарушается. Это связано с тем, что перемещение иона сопровождается разрушением ионной атмосферы в одном положении иона и формированием ее в другом, новом. Этот процесс происходит с конечной скоростью в течение некоторого времени, которое называется временем релаксации. Вследствие этого ионная атмосфера теряет центральную симметрию, и позади движущегося иона всегда будет некоторый избыток заряда противоположного знака. Возникающие при этом силы электрического притяжения будут тормозить движение иона. Таким образом, сила, действующая на ионы и определяющая скорость их движения в электрическом поле, а следовательно, электрическую проводимость раствора, будет  [c.461]

    Однако для более высоких концентраций такая простая модель раствора ун е не представляет ценности, бопее того, приближение > 1г г/ЬкТ < 1 не может использоваться вблизи иона г [см. уравнение (ХУ.7.2)]. По Бьер-руму [50], любую пару ионов, взаимодействие между которыми составляет величину порядка 2кТ и более, следует рассматривать как ионную пару, а пе как независимые ионы, а теория Дебая — Хюккеля справедлива лишь для свободных ионов, находящихся друг от друга на расстоянии, достаточном для того, чтобы взаимодействие между ними было меньше 2кТ. Если обозначить это расстояние гв и пренебречь ионной атмосферой вокруг такой ионной пары , то для пары, образованной двумя ионами с. зарядами 2, и получим [c.452]

    Электростатическая теория разбавленных растворов сильных электролитов, развитая Дебаем и Гюккелем в 1923 г., позволила теоретически вычислить средний коэффициент активности электролита, эквивалентную электропроводность сильных электролитов, а также теоретически обосновала правило ионной силы. При этом они сделали ряд предположений, справедливых только для предельно разбавленных растворов. Во-первых, они предположили, что единственной причиной, вызывающей отклонение свойств раствора электролита от идеального раствора, является электростатическое взаимодействие между ионами. Во-вторых, они не учитывали размеров ионов, т. е. рассматривали их как безразмерные точечные заряды. В-третьих, электростатическое взаимодействие между ионами они рассматривали как взаимодействие между ионом и его ионной атмосферой. Ионная атмосфера — это статистическое образование. [c.251]


    Величину удельного поверхностного заряда со стороны раствора находят так же, как плотность заряда ионной атмосферы при вычислении коэффициента активности ионов по первому приближению теории Дебая и Гюккеля. В обоих случаях отправными уравнениями служат уравнения Больцмана и Пуассона. При определении достаточно использовать лишь одну координату — расстояние от поверхности электрода в глубь раствора. Уравиение Пуассона (3.30) в этом частном случае упрощается до [c.264]

    Потенциал электрического поля грт вокруг какого-либо иона складывается из потенциала ф, определяемого зарядом этого центрального иона, и из потенциала фа ионной атмосферы вокруг центрального иона  [c.404]

    Недостаток применения уравнения Пуассона заключается в том, что, строго говоря, оно применимо к непрерывному заряду, но в ионной атмосфере заряды понов дискретны, и непрерывность заряда является лишь результатом статистического усреднения. [c.72]

    Энергия создания ионной атмосферы является сложной функцией концентрации раствора, от которой зависят также Г и X. Энергия заряжения центрального иона тоже входит в величину изобарного потенциала раствора, однако она прямо пропорциональна заряду иона, а при расчете на определенный объем раствора — прямо пропорциональна числу ионов, т. е. массе (само не зависит от концентрации). Поэтому при дальнейшем нахождении химического потенциала, т. е. при дифференцировании по массе, эта энергия дает постоянное, независимое от концентрации слагаемое, включаемое в которое мы не учитываем. [c.410]

    Тормозящее действие ионной атмосферы, заряд которой противоположен по знаку и равен заряду движущегося центрального иона, обусловливается тем, что прн перемещении иона из одной точки раствора в другую ионная атмосфера, окружающая ион в данной точке, рассеивается и в другой точке вокруг иона формируется новая ионная атмосфера, ионы которой перемещаются навстречу центральному иону. Процесс рассеивания и формирования ионной атмосферы не происходит мгновенно, для этого требуется определенное время т, которое связана [c.27]

    Зависимость эквивалентной электрической проводимости водных растворов сильных электролитов от концентрации в основном определяется силами межионного взаимодействия, зависящими от расстояния между ионами. В растворе электролита сольватирован-кые ионы находятся в тепловом движении и расположение их более беспорядочно, чем в кристалле. Вследствие электростатических сил между ионами даже в разбавленных растворах распределение их не может быть случайным. Притяжение разнозарядных ионов, и отталкивание одинаково заряженных должно приводить к тому, что в среднем вблизи каждого положительного иона возникнет избыток отрицательных ионов (и наоборот). Кал<дый ион окружен ионной атмосферой, заряд которой равен и противоположен по знаку заряду центрального иона (рнс. XIV. 2). Наличие ионной атмосферы вызывает взаимное торможение ионов при их движении в электрическом поле. [c.185]

    Заменим ионную атмосферу вокруг центрального иона сферой с зарядом —ге и потенциалом гра, эквивалентным потенциалу ионной атмосферы. Очевидно, радиус такой воображаемой сферы будет увеличиваться с ростом величины 1/х. [c.408]

    В присутствии нейтральных солей в растворе реакционная способность веществ изменяется. Следует ожидать, что ионная атмосфера будет оказывать влияние на процесс столкновения ионов в свою очередь при наличии соли ионная атмосфера будет изменяться. Число столкновений между ионами противоположного по знаку заряда увеличивается в присутствии солей, которые способствуют электростатическому притяжению, и уменьшается при действии солей, видоизменяющих ионную атмосферу так, что электростатическое притяжение уменьшается. Этот эффект, [c.82]

    Изменение энергии взаимодействия ионной атмосферы с центральным ионом сорта по мере изменения заряда последнего, [c.409]

    Таким образом, заряд ионной атмосферы вокруг одного иона равен заряду центрального иона с противоположным знаком. [c.408]

    Чтобы сравнивать между собой ионные атмосферы в различных растворах электролитов, вводят понятие об условном радиусе ионной атмосферы. Нужно еще учесть, что весь избыточный заряд ионной атмосферы равен и противоположен по знаку заряду централь- [c.251]

    Как видно из уравнения (XVI, 33), величина х является функцией состава раствора, его диэлектрической проницаемости и температуры. Эта величина характеризует изменение плотности ионной атмосферы р вокруг центрального иона с увеличением расстояния г от этого иона. Величина 1/и имеет размерность длины. Чем меньше величина х, тем медленнее плотность зарядов р в ионной атмосфере изменяется с увеличением г. [c.408]

    В коллоидных системах нахо ,ятся гранулы, размеры которых несравненно больше, чем размеры окружающих их нонов. Заряд гранулы определяется избирательной адсорбщ1ей иопов он компенсируется ионами иротивоноложного знака, диффузно распределенными в окружающем пространстве и образующими ионную атмосферу. Следует от.метить, что концепция но1нюй атмосферы родилась именно ири изучении коллоидных систем.  [c.100]


    Упрощающие допущения заключаются прежде всего в том, что в теории не отражаются процессы сольватации ионов. Вместо взаимодействия отдельных ионов рассматривается взаимодействие иона с окружающей его ионной атмосферой и определяется, как изменяется плотность заряда в ионной атмосфере с изменением расстояния от центрального иона. Расчет основывается на применении закона статистического распределения ионов в силовом поле, создаваемом центральным ионом. При этом для вычисления потенциала вместо зарядов отдельных ионов, составляющих ионную атмосферу, рассматривается соответствующее ей непрерывное электрическое поле. Плотность заряда в различных точках поля принимается пропорциональной избыточной концентрации ионов данного вида. Такая замена отдельных зарядов непрерывным полем дает возможность использовать более простые законы электростатики непрерывных сред, но искажает результат. [c.393]

    Подстановка в выражение (3.49) вместо д заряда цеитрального-иона и вместо г 5 величины г ) из уравнения (3.48) приводит к следующему выражению для энергии заряжения, равной энергии взаимодействия иона с ионной атмосферой  [c.88]

    Уравнения (156.10), (156.11) показывают, что толщина ионной атмосферы уменьшается с ростом заряда и концентрации ионов, т. е. с [c.440]

    Работа, которую надо затратить для того, чтобы вывести центральный ион из его ионной атмосферы или, наоборот, поместить центральный ион внутрь такой оболочки (при постоянном давлении), равна dFe drii) = iig, т. е. равна изменению свободной энергии Гиббса, обусловленной электростатическим взаимодействием иона i с его оболочкой. Это взаимодействие равно произведению потенциала оболочки г )а. иона i на заряд иона ipa.Zie.-Суммирование по всем ионам г-го типа в растворе привело бы к тому, что взаимодействие каждого иона г-го типа было бы учтено дважды один раз, когда данный ион рассматривается как центральный ион, и другой раз, когда этот же ион расположен на оболочке, образованной вокруг другого центрального иона. [c.448]

    В иолиэлектролитах крупные ионы образуются за счет последовательной ступенчатой диссоциации ионогенных групп, входящих в состав макромолекул, а образующиеся при этом ионы вместе с ионами обычных электролитов, присутствующими в растворе, распределяются в виде ионной атмосферы. Таким образом, коллоидные глобулы и макроионы полиэлектролита различаются но механизму образования зарядов (избирательная адсорбция и диссоциация ионогенных групп) и, возможно, по характеру их расиределе-ния. [c.100]

    Для проведения расчета можно использовать модель раствора, предложенную Дебаем и Гюккелем, согласно которой каждый ион окружен ионной атмосферой со знаком заряда, противоположным заряду центрального иона. Так как сильные электролиты диссоциированы полностью (а = 1), то все изменения молярной электропроводности с концентрацией обусловлены изменением энергии взаимодействия. Тогда в бесконечно разбавленном растворе, где ионы настолько удалены друг от друга, что силы взаимодействия между ними уже не могут проявляться, ионная атмосфера не образуется, и раствор электролита ведет себя подобно идеальной газовой сн-сгсмс, В этих условиях молярная электропроводность электролита будет наибольшей и равной .  [c.121]

    При наложении электрического поля ион начинает двигаться в одну сторону, а ионная атмосфера в противоположную. Это движение ионов разных зарядов (которые взаимно притягиваются) в противоположных направлениях создает как бы дополнительное трение, которое и уменьшает абсолютную скорость движения ионов. Этот эффект торможения носит название электрофоретического эффекта. По мере увеличения концентр аТППГТГ71етн0отГ110нн0и""а увеличивается, следовательно, увеличивается н тормозящий электрофоретический- [c.434]

    В теории Дебая — Гюккеля специально не оговаривается природа заряженных частиц. Их теория поэтому в принципе может быть иримеиепа к любым системам, в которых имеются подвижные заряженные частицы п в которых возможно образованпе ионных атмосфер. К числу подобных систем относятся коллоиды и полиэлектролиты. Общим для пнх я1зляется присутствие двух сортов частиц, резко различающихся по своим размерам и зарядам. [c.99]

    Существенным является использование понятия об ионной атмосфере. Центральный ион притягивает к себе ионы противоположного знака и отталкивает одноименные ионы. Поэтому вблизи центрального иона дольше будут находиться ионы противоположного заряда, чем одноименные. В результате вблизи центрального иона возникает избыточный заряд противоположного знака, величина которого убывает с удалением от центрального иона. В действительности распределение избыточного заряда дискретно, он обусловлен ионами, находящимися лишь в некоторых местах пространства. Вместо этих ионов рассматривается ионная атмосфера, заряд которой непрерывно убывая по величине с удалением от центрального иона, размазан по всему пространству. Каждый ион электролита является центральным, окруженным своей ионной атмосферой. Вокруг положительного иона располагается ионная атмосфера с отрицательным знаком избыточного заряда, а каждый отрицательный ион окружен положительной ионной атмосферой. Ввиду того что электролит в целом незаряжен, суммарный заряд ионной атмосферы всегда равен, но противоположен по знаку заряду цент- [c.213]

    Тормозящее действие ионной атмосферы, заряд которой иротивоно-ложен но знаку и равен заряду движущегося центрального иона, обуславливается тем, что нри неремещении иона из данной точки раствора в другую ионная атмосфера, окружающая ион в данной точке, рассеивается и в другой точке вокруг иона формируется новая ионная атмосфера, ионы которой перемещаются навстречу центральному иону. Процесс рассеивания и формирования ионной атмосферы не происходит мгповенпо, для этого требуется определенное время Г, которое связано с продолжительностью релаксации ионной атмосферы 0, то есть временем, за которое избыточная исходная концентрация ионов в ионной атмосфере уменьшается в е раз (е - основание натурального логарифма). Для электролитов с одинаковым зарядом ионов (симметричных или бинарньк электролитов) Г = 20. [c.20]

    Тормозящеее действие ионной атмосферы, заряд которой противоположен по знаку и равен заряду движущегося центрального иона, обусловливается тем, [c.23]

    Из приближенного уравнения (XV.7.6) видно, что вблизи иона на расстоянии г < 1/к потенциал складывается из двух частей кулоновского потенциала центрального иона zizlDr и — постоянного кулоновского потенциала, образованного зарядами — Zje, сферически симметрично распределенными на поверхности сферы радиусом 1/х вокруг иона z,e. Такое распределение зарядов получило название ионной атмосферы (ионное облако), а 1/х — среднего радиуса ионной атмосферы. [c.448]

    Для статистической теории электролитов исходным является следующее положение ионы распределены в объеме раствора (в каждый данный момент) не хаотически, а в соответствии сзаконом кулоновского взаимодействия их. Из этого положения методом статистической физики найдено распределение ионов различных знаков вокруг каждого отдельного иона. Таким образом, открыто существование ионной атмосферы ионного облака), имеющейся вокруг каждого иона и состоящей из ионов противоположного центральному иону знака. Это статистически неравномерное распределение в пространстве электрических зарядов разных [c.403]

    Каждый данный ион в растворе окружен ближе к нему расположенными ионами, несущими противоположный заряд, которые и создают вокруг него, как принято называть, ионную атмосферу. При перемещении под действием внешнего электрического поля ион частично выходит из этого окружения, но оно вновь воссоздается в новом положении иона. Скорость, с которой происходит восстановление ионной атмосферы в новом месте, называется временем релаксации. Для бинарного электролита в достаточно разбавленных растворах оно обратно пропорционально концентрации раствора и валентности ионову Для 0,1 н. растворов одно-однова-лентных электролитов оно рачно 0,6-10" сек, а для 0,001 н.— 0,6-10" се/с.  [c.410]

    Если мысленно выделим в разбавленном растворе сильного электролита один центральный ион (например, катион), то ионы противоположного знака (анионы) будут чаще наблюдаться около него, чем ионы с одноименным зарядом. Такое статистическое распределение ионов вокруг выбранного центрального иона устанавливается под влиянием двух факторов 1) электростатических сил притяжения и отталкивания, которые стремятся расположить ионы упорядоченно, как в кристаллической решетке, и 2) теплового движения ионов, под влиянием которого ионы стремятся расположиться хаотически. В результате вокруг центрального иона устанавливается некоторсе промежуточное статистическое распределение ионов, так называемая ионная атмосфера. При этом около центрального иона в среднем во времени будет некоторая избыточная плотность зарядов противоположного знака, которая по мере удаления от центрального иона убывает и на бесконечно большом расстоянии стремится к нулю. Фактически уже на расстоянии нескольких ангстрем от иона величина этого избыточного заряда становится очень малой и может практически считаться равной нулю. [c.251]

    Это показывает, что ионная ат1 псфера воссоздается все же не мгновенно. Следовательно, при" дви — на сзади него в каждый данный момент времени конце "- в, несущих противоположный заряд, несколько выш> , J реди него. Такая асимметрия ионной атмосферы тормозит о с иона. Это торможение называется эффектом релаксации Й ектом асимметрии. [c.410]

    Вывод основного уравнения. Дискретные заряды ионов внутри ионной атмосферы Дебай и Хюккель заменили непрерывным полем ионной атмосферы и рассматривали взаимодействие иона с онной атмосферой как кулоновское. Средняя плотность заряда р в какой-то точке связана со средней величиной потенциала 1]) в этой точке уравнением Пуассона  [c.440]


Смотреть страницы где упоминается термин Ионная атмосфера заряд: [c.84]    [c.88]    [c.90]    [c.122]    [c.123]    [c.146]    [c.538]    [c.332]    [c.273]    [c.50]    [c.440]   
Курс физической химии Том 2 Издание 2 (1973) -- [ c.383 ]




ПОИСК





Смотрите так же термины и статьи:

Атмосфера

Атмосфера, ионы

Иониты Ионная атмосфера

Ионная атмосфера

Ионов заряды



© 2025 chem21.info Реклама на сайте