Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Байер строение

    Немецкий химик Иоганн Фридрих Вильгельм Адольф фон Байер (1835—1917) использовал в 1885 г. идею трехмерного строения молекул для изображения пространственного строения циклических соединений (в виде плоских колец). Если четыре связи атомов углерода направлены к четырем углам тетраэдра, то угол между любыми двумя связями составляет 109°28. Байер утверждал, что в любом органическом соединении атомы располагаются, как правило, так, что углы между связями атома углерода примерно соответствуют приведенному значению. Если же по какой-либо причине угол меняется, то атом оказывается в напряженном состоянии. [c.90]


    Строение индиго выяснено Адольфом Байером, который осуществил также первые, правда, не имеющие практического значения, синтезы этого красителя. Начало практически важным методам синтеза индиго было положено Гейманом. [c.693]

    Позднее Адольфом Байером был разработан целый ряд синтезов индиго они были слишком дороги для практического получения этого красителя, ио позволили выяснить его строение. [c.695]

    Байер предполагал, что все циклические углеводороды имеют плоское строение, т. е. все атомы углерода лежат в одной плоскости. [c.478]

    Впервые объяснение различной устойчивости циклических систем дал немецкий химик А. Байер в своей теории напряжения (1885). Байер попытался связать устойчивость циклов с особенностями их строения. При этом он исходил из двух предположений во-первых, циклические системы должны быть плоскими, во-вторых, за меру напряженности (или устойчивости) цикла Байер принял любое отклонение валентных углов от нормального угла 109°28 (угол в правильном тетраэдре). Именно такое отклонение валентных связей и обусловливает легкость или трудность образования цикла и создает, по Байеру, в молекуле напряжение, которое понижает ее устойчивость. Например, у простейшего алициклического соединения — циклопропана, который можно изобразить в виде равностороннего треугольника (рис. 27), направление валентных связей отклоняется [c.271]

    Эти противоречия были устранены позднее работами Саксе и Мора. Онн показали, что многие циклы, за исключением трехчленного, не имеют плоскостного строения (чего не допускал Байер). Выход цикла из плоскости связан со взаимным отталкиванием соседних СНг-групи и стремлением уменьшить угловое напряжение в [c.272]

    А. Байер — автор теории напряжения (1885 г.) — ошибочно считал, что лишь циклопентан практически свободен от углового напряжения, а большие циклы имеют плоское строение и потому напряжены. Доводом в пользу существования напряжения в больших циклах служили трудности в синтезе циклов большого размера. [c.135]

    Практическая потребность, стремление содействовать дальнейшему развитию входившей в моду новой отрасли промышленности заставили А. Байера еще в 60-х годах начать свои исследования, увенчавшиеся почти через 20 лет (1883 г.) установлением строения индиго и разработкой ряда методов его синтеза. Один из этих методов (синтез Геймана) послужил основой для технического получения синтетического индиго (1897 г.). Научным же результатом работ А. Байера явилась глубокая разработка химии одного из азотистых гетероциклов — индола, производным которого является индиго. [c.41]


    Представления о неплоском строении циклов в дальнейшем полностью оправдалось. Выяснилось также, что рассматривавшиеся Байером искажения валентных углов — только одна из возможных причин напряжения в молекулах (обзор см. [1]). Хендриксон [2] предложил следующий метод расчета с учетом четырех факторов, которые могут увеличивать внутреннюю энергию молекулы. [c.317]

    Строение и устойчивость циклических соединений зависят от величины цикла и его сопряженности. Несопряженные циклы в комплексах в отличие от сопряженных обычно неплоские. Конфигурацию их можно предсказать, используя теорию напряжения Байера. Согласно этой теории наиболее выгодны энергетически те соединения, в которых сохраняются нормальные валентные углы и нормальные длины связей. [c.67]

    Из многочисленных работ Байера в различных областях органической химии назовем установление строения пиррола и индола установление строения и первый синтез индиго (1880), исследования в области ацетиленовых, ароматических и алициклических углеводородов, приведшие его к созданию теории напряжения (1885). [c.555]

    Решающими для изучения индиго явились работы А. Байера, завершившиеся в 1880 г. определением строения и синтезом этого красителя. [c.597]

    При перегонке индиго с цинковой пылью Байер получил индол, строение которого было им позднее доказано синтезом. [c.599]

    В противоположность насыщенным углеводородам, алкены и циклоалкены могут быть охарактеризованы с помощью химических реакций. Так, они на холоду обесцвечивают щелочной раствор перманганата калия (проба Байера, реакция Вагнера) или раствор брома в хлороформе. С тетранитрометаном они образуют окрашенные в желтый цвет комплексы с переносом заряда. Для доказательства строения олефинов можно использовать гидроксилирование с последующим расщеплением гликоля, а также озонолиз. [c.234]

    Решающее доказательство структурного сходства барбитуровой кислоты и аллоксана было получено Байером (1863—1864 гг.). Правильная структурная формула впервые была предложена в 1875 г. Медикусом. На основании исследований Байера Э. Фишеру и Ашу в 1885 г. удалось подтвердить строение синтезом (см. ранее). [c.602]

    Установление структуры индиго было начато около 1830 г. Его окисление азотной кислотой приводит к изатину. Только в 1883 г. Байеру удалось решить эту проблему с помощью метода синтеза, доказывавшего строение. В его формуле индиго приписывалась 2-конфигурация. Позднее методами рентгеноструктурного анализа было показано, что молекула обладает -конфигурацией, которую стабилизуют две внутримолекулярные водородные связи. [c.755]

    Строение углеводов. Соединения, подобные молочному сахару, были названы углеводами в силу того, что первые известные представители этой группы являлись как бы сочетанием углерода с водой. Такое же сочетание мы встречаем у формальдегида, который по гипотезе Байера является материалом для образования углеводов, а сам в свою очередь образуется в природе в зеленых частях растений из углекислоты и воды с выделением кислорода  [c.51]

    К сожалению, последние авторы не выделили и не проанализировали твердых солей, но исследовали только явления галохромии, наблюдающиеся при обработке карбинолов кислотами. С тех пор как Байер словом г а л о х р о м и я назвал способность бесцветного или слабоокрашенного соединения давать с крепкими киспотами, особенно с концентрированной серной, темноокрашенные соединения, зто слово часто наиболее охотно применяется тогда, когда ничего определенного не знают о строении нового окрашенного производного. [c.145]

    Выводы, сделанные на основе теории напряжения Байера для объяснения особенностей свойств окиси этилена, нашли дополнительное обоснование при электронографическом исследовании строения ее молекулы . Этими данными была подтверждена для окиси этилена формула строения Вюрца в виде трехчленного цикла, аналогично циклопропану с межатомными расстояниями (в A)  [c.17]

    Валлах высказал предположение, что пинокамфон и пинокамфеол являются непосредственными дериватами пинена. Если принять для этого последнего вместе с Вагнером и Байером строение [c.269]

    Каолинит, диккит, тальк, пирофиллит, слюда, монтмориллонит (вторичная пористость), вермикулит (вторичная пористость), сажи (первичная пористость), гидроокись магния, окись магния (вторичная пористость), модификация окиси железа, графит, окись графита, различные порошки из пластинчатых кристаллов Активный уголь (первичная пористость), окись железа (первичная пористость), окись магния (первичная пористость), байерит, т]-А120з (вторичная пористость), пористые кристаллы, металлические напыленные пленки Монтмориллонит (первичная пористость), вермикулит (первичная пористость), т)-А120з (первичная пористость), первичные поры в разных кристаллах слоистого строения [c.370]

    Сложные ароматические проиаводные мочевины приобрели значение в качестве лекарственных средств для лечения заболеваний, вызванных трипанозомами. Лучший препарат этой группы, так называемый Байер 205 , нагаппи, или германии (Коте, Дрессель), имеет следующее строение  [c.584]


    Соли трпарилкарбинольЕгых соединершй, для которых хиноидное строение невозможно, также могут быть окрашены это было показано Байером, которому удалось получить окрашенные сульфаты трианизил-карбинола, л-трихлорфенилкарбинола и т. п.  [c.746]

    Диметилпирон способен присоединять алкилирующие вещества (диметилсульфат, иодистый метил) с образование.м солей сильного основания, которые почти сравнимы с четвертичными аммони Выми солями (Керман). Для установления строения этих солей имеет большое значение их реакция с аммиаком, при которой гладко образуется 2,6-диметил-4-метоксипиридни (Байер). Следовательно, солям метилированного пирона соответствует формула (а)  [c.1013]

    Это несоответствие теоретических представлений экспериментальным фактам побудило Г. Заксе, а впоследствии Э.Мора модернизировать теорию Байера, сняв постулат последнего о плоском строении циклоалканов с числом атомов углерода, большим или равным шести. Они предположили, что при замыкании циклов валентные углы у всех атомов углерода остаются тетраэдрическими, вследствие чего угловое напряжение исчезает, а циклы становятся неплоскими. [c.478]

    А. Байером, который получил его синтетическим путем. В настоящее время установлено, что индиго имеет гранс-строение, которое объясняет его высокую прочность и светостойкость. Индиго — темно-синий порошок с Гпл = 390—392°С, не растворимый в воде, щелочах, разбавленных кислотах и в обычных органических растворителях. Однако при восстановлении индиго гидросульфитом натрия N328204 получается бесцветное соединение — лейкоин(Зиго (белое индиго), которое растворимо в щелочных растворах  [c.365]

    Углеродный скелет циклопропана представляет собой равносторонний треугольник с валентным углом 60 эта величина значительно отклоняется от нормального тетраэдрического направления валентностей атома углерода в состоянии хр -гибридизации (109 28 ). Неизбежно должны отклоняться от своего нормального положения валентности атомов углерода, входящих в состав колец циклобутана С4Н8, циклопентана С Н,,. На эту особенность строения циклических соединений обратил внимание в конце прошлого века А. Байер в своей теории напряжения . [c.103]

    При плоско.м расположении углеродных атомов кольца (такое плоское расположение и принимал Байер для своих расчетов и рассуждений) реализуются только невыгодные заслоненные (четные) конформации. Поэтому трехчленный цикл единственный, все углеродные атомы которого лежат в одной плоскости (по той простой причине, что через три точки всегда можно прорести плоскость). Все остальные алициклы, начиная с четырехчленного, имеют не-плрское строение циклобутан — форму квадрата, несколько изогнутого по диагонали циклопентан—форму конверта. Общее напряжение уменьшается от трехчленного цикла к пятичлен- вму, вместе с тем падает и склонность к реакциям раскрытия цикла. [c.104]

    Теория напряжения способствовала развитию предстанлепий о пространственном строении циклических соединений. Изображая на плоскости строение различных алициклических углеводородов, А. Байер рассчитал для них углы между валентностями, соединяющими углеродные атомы. На основе своей теории А. Байер объяснял, почему наиболее устойчивы пяти- и шестичленные циклы. Отсутствие научно обоснованного представления о природе валент- [c.227]

    Деформация валентных углов атома углерода связана с затратой энергии, что должно приводить к повышению энтальпии циклического соединения по сравнению с соответствующим соединением с открытой цепью. Поэтому, по Байеру, степень отклонения направления валентных связей атома углерода от нормального может служить мерой напряженности циклических соединений. При плоскостном строении в многочленных циклах должны возникать очень большие напряжения вследствие все возрастаюшего отклонения валентных углов. В связи с этим Байе- [c.167]

    Алициклические углеводороды называют по системе Байера. Циклическое строение углеводорода обозначают префиксом цикла и указывают число атомов в цикле (циклопентан, циклогексан и т. п.). Для бициклических и трициклически.х соединений этого класса применяется следующий метод  [c.647]

    НОЙ конфигурации была решена прежде всего благодаря использованию исходных и промежуточных вешеств циклического строения, жесткая геометрия которых обеспечивала надежный контроль стереохимии образопания новых центров. Но не менее важным было применение реакции Байера— Виллигера как метода, позволявшего с уверенностью использовать эти преимущества работы с циклическими соединениями, поскольку заранее было известно, что окислительное раскрыгие циклов в этих соединениях будет проходить с сохранением конфигурации. [c.262]

    Было высказано также предположение, что бензол имеет симметричную структуру, обладающую связями, отличающимися от двойной, но чувствительными к некоторым реагентам на двойные связи. Многие современники Кекуле, отмечая существенную разницу в реакционной способности бенаола и непредельных соединений, так ке подчеркивали, что характер связи в бензоле необычен. Относительная инертность бензола противоречила циклогексатриеновой формуле и не выдерживала аргументированной критики Ладенбурга. Одной из формул бензола, предложенных для того, чтобы обойти это затруднение, была призматическая формула I Ладенбурга (1869), симметричная, но не содержащая двойных связей формулы II и III, содержащие диагональные, или пара-связи, были предложены Клаусом (1867) и Дьюаром (1867) соответственно согласно другой концепции, высказанной в 1887 г. Армст-ронгом в Англин и Байером в Германии, бензол имеет центрическую формулу IV, в которой четвертые валентности углеродных атомов направлены к центру. Тиле (1899) ввел удобное представление о строении бензола (V), основанное на наблюдении, что сопряженные системы двойных и ординарных связей функционируют как одно целое и более устойчивы, чем несопряженпые системы с той же степенью ненасыщенности. [c.124]

    С развитием органической химии и, в частности, химии красителей возникли и другие теории, объясняющие зависимость цветности соединений от нх строения, в частности теория координационно ненасыщенных атомов (Байера, 1902), связанная с яатением галохромии (бесцветные соединения, например трифенилкарбинол, при действии кислоты образует окрашенные соли, многие карбонильные соединения, например фенантренхинон, приобретают красную окраску под влиянием кислот или солей — РеС1з. А1С1з и др.), хнноидная теория цветности, рассматривающая красители, как производные хинонов. [c.292]

    В кои. 1I) н. А. Байер ввел представление о напряжении циклич. систем (см. Напряжение молеку.ч), а Г. Заксе и Э. Мор выдвинулнч гипотезу о неплоском строении циклов. Развитие этих идей привело к возникновению в нач. 1950-х гг. конфор.чационного анализа, широкое примен. к-рого в чЕ1ачит. степени обязано работам О. Хасселя, [c.544]

    Теория хим. строения была позднее распространена на установление структур непредельных, аром, и алициклич. соединений (Кекуле, К. Э. Эрленмейер, В. В. Марковников, А. Байер и др.) ее дальнейшим развитием явилось учение о взаимном влиянии аггомов в молекулах, определ5по-щем св-ва соединений (Марковников, А. М. Зайцев). Все это способствовало развитию синт. работ. 70-е и послед, годы [c.652]

    Применение такого подхода к циклогексану требует, чтобы внутренпий угол между связями в этом соединении составлял 120° (внутренний угол шестиугольника), и предполагает, что циклогексан будет обладать большим напряжением, чем циклопентан. Однако экспериментальные данные, приведенные в табл. 7-2, не согласуются с этим выводом. Возникшее противоречие является следствием того, что теория Байера базируется на допущении о плоском строении всех циклических систем. На самом деле только циклопентан и циклы с меньшим числом атомов можно рассматривать в нервом приближении как плоские поэтому трудно ожидать, чтобы циклогексан и большие циклы следовали предсказаниям, сделанным па основе теории [c.268]

    Интересно отметить, что А. М. Бутлеров, исходя из теории строения предсказал еще в 1877 г. возможность двойственного реагирования и таутомерии как обратимой изомеризации. Однако первые явления этого рода были открыты Байером в 80-х годах прошлого века не в области кето-енольной таутомерии, рассмотренной нами на примере ацетоуксусного эфира, а на так называемой лактим-лактамной таутомерии (стр. 424) изатина первые же исследования кето-енольной таутомерии относятся к самому концу XIX и началу XX века. [c.417]

    По мнению Деккера Байера и Вернера здесь имеется наличие солей оксипирилия следующего строения [c.137]

    Они содержат ту же р-хиноидную группу оксониевой соли, как и оксониевые соли фенольных зфиров. По своему строению они представляют собой не карбониевые соли, как это предполагали Байер и Виллигер они аналогичны солям амидированных красящих веществ трифенилметанового ряда, как это явствует из следующих формул солей р-анизил-дифенилкарбинола (I) и диметилфуксонимония (II)  [c.144]


Смотреть страницы где упоминается термин Байер строение: [c.317]    [c.246]    [c.121]    [c.117]    [c.34]    [c.1791]    [c.21]    [c.240]    [c.55]    [c.208]    [c.114]   
Токсичные эфиры кислот фосфора (1964) -- [ c.450 ]




ПОИСК





Смотрите так же термины и статьи:

Байер



© 2025 chem21.info Реклама на сайте