Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Лазеры в синтезе

    Для того чтобы ядерный синтез стал практически доступным источником энергии, предстоит еще рещить многочисленные проблемы. Дело не только в том, что проведение ядерного синтеза требует сверхвысоких температур необходимо еще как-то ограничить эту реакцию в пространстве. Ни один из известных конструкционных материалов не в состоянии противостоять чудовищным температурам, необходимым для ядерного синтеза. Больщие усилия исследователей направлены на использование сильных магнитных полей с целые пространственного ограничения реакции. Многие современные исследования посвящены применению мощных лазеров для получения температур, требуемых при ядерном синтезе. Хотя есть основания для некоторого оптимизма, нельзя предсказать, когда удастся преодолеть огромные технические трудности, стоящие на пути осуществления термоядерного синтеза, и удастся ли их преодолеть вообще. Поэтому неясно, станет ли когда-нибудь ядерный синтез практическим источником энергии для человечества. [c.274]


    Можно ожидать, что лазеры в качестве источников света найдут широкое применение в промышленном синтезе. Однако необходимые мощные лазеры до сих пор отсутствуют в продаже, и лазерные методики ограничиваются в промышленности избирательным разделением молекул и атомов. Примером такого использования служит фотохимическое разделение изотопов. Лазерное разделение изотопов зависит от сдвигов в спектре оптического поглощения в результате изотопного замещения. [c.286]

    Применение лазерного излучения в химии наиб, эффективно для процессов, связанных с получением дорогостоящих продуктов и изделий (разделение изотопов, создание интегральных схем для микроэлектроники, синтез особо чистых в-в и реактивов, потребляемых в небольших кол-вах). Использование лазеров в крупнотоннажных произ-вах, по-виднмому, пойдет по пути инициирования технол. процессов, базирующихся на цепных р-циях. При длине цепи V каждый химически активный центр, созданный лазерным излучением, даст V молекул продукта. Тогда энергетич. стоимость продукта оказывается равной Qт v , где б-затраты лазерной энергии на создание активной молекулы или радикала, Т1-КПД лазера. При большой длине цепи ( 10 — [c.566]

    Образование С. (в частном случае-гидратов) имеет существ. значение во мн. пром. и прир. процессах. Вяжущие св-ва в-в (цемент, гипс и др.) в осн. объясняются образованием кристаллогидратов. При смешивании цемента с льняным маслом (олифа) образуется вяжущий материал, содержащий кристаллосольваты минералов цемента (используют для закрепления стекол в аквариумах). Кристаллический С. BF3 с диэтиловым эфиром-удобное соед. для хранения газообразного BF3. С., как правило, образуются при экстракции и определяют закономерности этого процесса. С. применяют в неорг. синтезе. Так, в синтезе комплексных соед. часто используют принудительное введение в комплекс молекул р-рителя с образованием лабильного интермедиата. С. РЗЭ применяют в жидкостных лазерах. [c.380]

    Сложности в подборе подходящего лазера для возбуждения UFe инициировали работы по синтезу новых молекулярных соединений урана. Весьма перспективными могут оказаться попытки синтезировать молекулу с полосой поглощения в районе 10 мкм, попадающую в зону генерации мощных СОг-лазеров. Другое возможное направление развития проблемы — это синтез слабосвязанных молекул ураиа, с тем чтобы лазерная энергия, идущая на химическое превращение молекулы, была меньше, чем для UFe. Эти Новые направления оживили работы по синтезу молекулярных соединений урана. [c.269]


    В настоящее время ведутся работы и по управляемому лазерному термоядерному синтезу. Химические лазеры, обладающие высоко энергетической эффективностью и дающие излучение высокой энергии и мощности, представляются наиболее перспективными для этих целей.,  [c.106]

    Широко применяются в качестве лазерных материалов и алюмо-иттриевые гранаты, активированные неодимом. Лазеры с неодимом используются в экспериментах по управляемому термоядерному синтезу. Пришли они и в за-рубен<ную военную технику — в качестве дальномеров. Мощные неодимовые лазеры перспективны в качестве одного из важных элементов спутниковой связи, [c.136]

    Для решения задач течения многоатомных смесей в газовых и газодинамических лазерах необходимо еще более детальная информация о микроструктуре течения, в частности о распределении частиц по квантовым уровням, вероятностям излучательных переходов и т. п. Наконец, при исследовании проблемы управляемого термоядерного синтеза, существенной частью которой являет- [c.122]

    Со времени создания в 1960 г. первого лазера квантовая электроника прошла в своем развитии огромный путь. Открыты различные виды лазеров, генерирующих излучение на тысячах длин волн в спектральном диапазоне примерно от 0,1 до 2000 мкм, разработаны эффективные методы управления параметрами излучения. Стали реальностью казавшиеся ранее невероятными чрезвычайно высокие мощность, степень монохроматичности, спектральная яркость и другие параметры оптического излучения. Успехи лазерной техники и быстрое развитие сфер ее применения привели не только к существенному усовершенствованию традиционных оптических методов исследования, но и к появлению принципиально новых идей и методов, новых научных направлений. Диапазон научных и практических применений лазеров постоянно расширяется. Представление об этом может дать простое перечисление примеров — лазерные спектроскопия и фотохимия, управляемый термоядерный синтез, локация и связь, контроль за состоянием природной среды, микрохирургия отдельной живой клетки, автоматический раскрой тканей и металлических листов... Без преувеличения можно утверждать, что нет ни одного естественно-научного направления или связанной с ним области техники, где бы применение лазеров уже не привело к получению новых интересных результатов или не сулило их получение в будущем. [c.159]

    Существует ряд перспективных методов приготовления термостойких материалов. Это имплантация ионов, пламенный синтез, плавление в отсутствие гравитации, напыление на кристаллические поверхности с помощью молекулярных пучков (эпитаксия) и химическая конденсация из пара под действием тлеющего разряда (плазма). Относительно недавно был предложен необычный метод, базирующийся на использовании лазерной техники. Луч мощного импульсного лазера, сфокусированный на твердой поверхности, способен кратковременно (менее чем за 100 не) создавать исключительно высокие локальные температуры, вплоть до 10 ООО К. В месте фокусировки такого короткого высокотемпературного импульса происходят значительные химические и физические изменения, например модификация поверхности, образование поверхностных сплавов, а в условиях конденсации пара он может инициировать специфические химические реакции. Все упомянутые методы приводят к термодинамически нестабильным фазам с особыми замороженными свойствами. (Примером подобной фазы служит алмаз. Этот драгоценный камень ценится за игру света и исключительную твердость, но в нормальных условиях он термодинамически неустойчив относительно графита.) [c.91]

    Анализ спектра излучения показывает, что выделяющаяся при реакции энергия распределена между продукт и не статистически. Напротив, значительная часть ее (39%) первоначально локализуется как колебательная энергия НС1. За открытия явлений такого рода в 1986 г. Джону Поляни (Университет Торонто) была присуждена Нобелевская премия по химии. Эти исследования непосредственно привели к созданию первого химического лазера — лазера, который получает энергию от взрыва смеси водорода с хлором. Химические лазеры отличаются от обычных тем, что они превращают в когерентное излучение не энергию электрического источника, а энергию химической реакции. Эти самые первые работы привели к открытию десятков химических лазеров, в том числе двух достаточно мощных для применения в целях инициирования термоядерного синтеза (йодный лазер) или в военных целях в программе звездных войн (водородно-фторидный лазер). [c.147]

    Оптическая мощность современных лазеров в 10 ООО раз выше на любой частоте, чем мощность любой самой большой импульсной лампы. Очевидно, что они не просто расширяют возможности, которые давали обычные источники света. Взаимодействие молекул с фотонным полем такой огромной интенсивности приводит к новым процессам. Например, при нормальной интенсивности света одновременное поглощение двух фотонов одной молекулой представляет собой настолько редкое явление, что оно не может быть обнаружено. Но вероятность такого события возрастает пропорционально квадрату интенсивности света. Лазеры позволяют увеличить интенсивность света в 10 ООО раз, и вследствие этого вероятность двухфотонного поглощения становится на четыре порядка выше, чем вероятность поглощения одного фотона. Это позволяет нам осуществлять в экспериментах генерацию молекулярных состояний, не достижимых при однофотонном возбуждении. Более того, полная поглощенная энергия может стать достаточной для ионизации молекулы. А это открывает новые перспективы в химии ионов. Интерес к этой области исследований быстро растет, поскольку недавно были открыты ион-молекулярные реакции в межзвездном пространстве, а также потому что ионы являются основными частицами в плазме (тлеющий разряд) и при ядерном синтезе. Двухфотонная ионизация была использована для обнаружения особых молекул в специфически трудно достижимых условиях, подобных существующим в пламенах и при взрывах. Например, концентрацию оксида азота N0, который является составной частью смога, можно легко определить в пламени по количеству ионов, образующихся [c.148]


    Облучение точно настроенным лазером вдвое увеличивает выход на этой стадии синтеза витамина Оз. [c.164]

    Новые применения ядерной техники в управляемом термоядерном синтезе. В настоящее время во ВНИИ ядерной физики РФ ведутся работы по прямому преобразованию энергии ядерных реакций в лазерное излучение оптического диапазона [2]. Задача инерционного термоядерного синтеза решается на установке Искра-5 с применением 12-канального лазера с суммарной мощностью излучения 30 кДж и длительностью импульса 0,3 не. Оптические зеркала направляют 12 лазерных лучей на мишень диаметром 2 мм лазерное излучение трансформируется в рентгеновское излучение, которое обеспечивает 3000-кратное сжатие сферической мишени диаметром 0,03 мм, содержащей дейтерий-тритиевую смесь. Нри этом радиус мишени уменьшается в 14 раз. Сейчас создается установка Искра-6 , мощность которой будет в 10 раз превышать мощность установки Искра-5 . [c.27]

    Начиная с 80-х годов микроволновая техника стала находить всевозможные побочные применения, связанные с накачкой лазеров, с начальной фазой экспериментов по контролируемому термоядерному синтезу в микроэлектронике, в экспериментах по генерированию плазмы с использованием электронного циклотронного резонанса для получения и обработки диэлектрических и полупроводниковых пленок. [c.97]

    Новые возможности органического синтеза может открыть использование лучей лазера. [c.9]

    Аппарат для синтеза монокристаллов методом плавающей зоны должен состоять из следующих частей (блоков) нагревательного устройства, механизма для крепления и перемещения образца, камеры для создания защитной атмосферы (вакуума), пульта управления и контрольных устройств. Нагревательные устройства могут быть основаны на омическом нагреве косвенного нагревателя можно использовать зеркальные ( оптические ) печи, газовые лазеры, высокочастотный индуктор, электронные пушки нагрев может производиться также за счет тихого электрического разряда ( полый катод ) или переноса вещества в электрической дуге постоянного тока [c.229]

    Прогноз... Он самый оптимистичный, когда мы говорим о лазерах. И не только метеорологи ждут от них многого. Лазер-это связь с космическими мирами, беспроволочная передача энергии, управляемый термоядерный синтез и безотходные технологические процессы. Лазер-это и искусство, археология, фотография. И, конечно, лазер-это авиация. [c.6]

    Оксид А 2О3 в различных его видах находит применение как огнеупорный и абразивный материал, а синтетические монокристаллы оксида служат рабочим телом лазеров, опорным камнем для точных и часовых механизмов, ювелирных изделий. Кроме того, оксид алюминия является главной составной частью алюминиево-титановых керметов (А120 ,—Т1А1,. 412О3—Т1). Алюмогель применяется как адсорбент для осушки газов, очистки воды, осветления растворов в сахарном производстве. Гидрид алюминия нашел применение как компонент твердого ракетного топлива, восстановитель в органическом синтезе. Фосфид, арсенид и антимонид алюминия находят прнме 1е-ние в полупроводниковой технике для изготовления солнечных батарей и лазеров. [c.156]

    Изучены фазовые равновесия в системах La- o-Ni-0, Ьа-Мп-Н1-0, Ьа-Ме-Со-О, Ьа-Ме-К1-0, Ьа-Ме-Со-Ы1-0, где Ме - Са, 8г, Ва. Методами рентгеновской, нейтронной дифракции и ЕХАР8 спектроскопии изучены структуры индивидуальных сложнооксидных фаз. Впервые установлены типы ряда структур, вычислены координаты атомов, длины связей и степени заполнения различных кристаллографических позиций. Изучена кристаллическая структура полученных твердых растворов и выполнено моделирование их дефектной структуры, оценена кислородная нестехиомет-рия. Методом валентных связей во все оксидах оценена степень окисления никеля. Полученные сложнооксидные материалы могут служить при изготовлении электродов топливных элементов, газовых лазеров и катализаторов многотоннажного органического синтеза. [c.118]

    Важные практич. применения Ф. связаны с фотофафией, фотолитофафией и др. процессами записи и обработки информации, пром. и лаб. синтезом орг. и неорг. в-в (фото-нитрозирование циклогексана с целью получения капролак-тама, синтез витаминов фуппы Д напряженных полициклич. структур и др.), синтезом и модификацией полимерных материалов (фсггополимеризация, фотомодификация и фотодеструкция полимеров), квантовой электроникой (фотохим. лазеры, затв ы, модуляторы), микроэлектроникой (фоторезисты), преобразованием солнечной энергии в химическую. [c.183]

    Т. натрия, калия и аммония - компоненты электролитов при рафинировании и получении покрьпий цветных металлов, флюсов ддя сварки и пайки, формовочных составов при литье А1 и Mg и их сплавов, добавки к смазочно-охлаждающим жидкостям при обработке металлов давлением, фторирующие агенты, гербициды. Т. лития и н ия - исходные в-ва для получения тетрагидридоборатов, "Г аммония -консервант для древесины, антипирен для полимеров. Т. тяжелых металлов (Ре, Zn, Не и др.) - катализаторы р-ций полимеризации, гидролиза, формилирования и др. в орг. синтезе. Такие Т., как 1ЧР4ВР4, N2F5BP4, используются в хим. лазерах. Т. нитрозила и нитрозония - агенты для нитрозирования и нитрования в орг. синтезе. Т. орг. осно- [c.204]

    За последние 20 лет X. т. претерпела колоссальные изменения в научном и прикладном отношении. В совр. условиях массовые продукты основной химии уступают место продуктам тонкого хим. синтеза, все чаще условия процессов и качество продуктов определяют св-ва поверхности раздела фаз, отдельных частиц, а не объема. От макроструктуры в-в переходят к управлению микроструктурой неструктурированная среда вытесняется структурированной (мицелла, кластер) энергию вводят направленно с помощью лазера с заданной частотой излучения, в ввде плазмы, электрич. поля вместо нормального состояния фаз используют суперкритич. флюиды, жвдкие кристаллы. Появились новые области X, т. биотехнологая, генная инженерия, конструирование материалов на мол. уровне (нанотехнология). [c.241]

    Химия гетероциклических соединений — одно из ведущих направлений органической химии. Гетероциклические соединения различной природы служат основой многих природных и синтетических биологически активных веществ, а также обладают целым рядом других полезных свойств многие из них применяются, например, как органические полупроводники, фотоактив-ные материалы, антиоксиданты, присадки к топливам и маслам, материалы для активных сред жидкостных лазеров (на красителях), технические и пищевые красители, консерванты и т. д. Наряду с большой практической значимостью гетероциклические соединения представляют несомненный теоретический интерес как модели для изучения взаимосвязи химических свойств соединений с их строением, а также для разработки методов органического синтеза, что, конечно же, напрямую связано со строением соединения, причем важнейшее значение имеют размер цикла, степень насьиценности, природа и число гетероатомов. [c.5]

    ЛИ объявят о выпуске этого материала. В апрельском 1978 г. выпуске Лэйпидари джорнел КЦ рекламировала фирма Делтроник . Уменьшить стоимость КЦ и увеличить производство ее кристаллов, отвечающих по качествам требованиям геммологов, пытаются путем применения других методов синтеза. Возможно получение КЦ из раствора-расплава, поскольку уже испытано несколько солевых растворителей, пригодных для выращивания кристаллов, однако медленные скорости роста—существенная помеха для экономически выгодного способа, конкурирующего с технологией выращивания из расплава. Делаются попытки найти альтернативные способы достижения высоких температур, например, с помощью мощных ламп и лазеров или ионизированной плазмы. Можно полагать, что популярность КЦ приведет к изучению и других материалов с высокой точкой плавления как возможных заменителей алмаза. [c.103]

    Нитрование л-терфенила смесью дымящей азотной и уксусной кислот приводит к получению 4,4"-динитро-л-терфе-нила, не обладающего люминесцентными свойствами, но при его восстановлении образуется диамин, служащий промежуточным продуктом синтеза интенсивно светящихся 4,4"-ди-метокси- и 4,4"-диэтиламино-л-терфенилов. Последний (II) применяется в жидкостных лазерах, генерирующих в фиолетовой и сине-зеленой областях спектра [3]. [c.4]

    Переходы между вращательными уровнями с поглощением или испусканием излучения, которые возможны только в полярных, обладающих постоянным дипольным моментом молекулах, расположены в далекой инфракрасной (ДИК) области спектра и большинство из них имеют длины волн более 50 мкм (в случае легких молекул и/или переходов между уровнями с высокими значениями вращательного квантового числа длины волн могут быть значительно более короткими). Генерация излучения на вращательных переходах при оптической накачке молекул получена сейчас в диапазоне длин волн примерно от 30 до 2000 мкм. Этот спектральный диапазон был слабо освоен квантовой электроникой до появления в 1970 г. первого ДИК-лазера [3] на фторметане с оптической накачкой, положившего начало быстрому развитию исследований лазеров такого типа. Постоянно растущий интерес к ДИК-лазерам основан на желании реализовать большие потенциальные возможности этих источников узкополосного и мощного субмиллиметрового и миллиметрового излучения в исследовании плотной высокотемпературной плазмы (термоядерный синтез), в спектроскопии и радиоспектроскопии, в атмосферных, биологических, метрологических и других исследованиях. В настоящее время известно около 1000 линий генерации в упомянутом спектральном диапазоне, причем его участок примерно от 50 до 500 мкм заполнен линиями почти равномерно с шагом около 1 мкм [c.169]

    В стекловарении стронций используют для получения специальных оптических стекол он повышает химическую и термическую устойчивость стекла и показатели преломления. Так, стекло, содержащее 9 % 5гО, обладает высоким сопротивлением истиранию и большой эластичностью, легко поддастся механической обработке (кручению, переработке в пряжу и ткани). В нашей стране разработана технология получения стронцийсодержащего стекла без бора. Такое стекло обладает высокой химической стойкостью, прочностью и электрофизическими свойствами. Установлена способность стронциевых стекол поглощать рентгеновское излучение трубок цветных телевизоров, а также улучшать радиационную стойкость. Фторид стронция используют для производства лазеров и оптической керамики. Гидроксид стронция применяют в нефтяной промышленности для производства смазочных масел с повышенным сопротивлением окислению, а в пищевой — для обработки отходов сахарного производства с целью дополнительного извлечения сахара. Соединения стронция входят также в состав эмалей, глазурей и керамики Их широко используют в химической промышленное ги в качестве наполнителей резииы, стабилизаторов пластмасс, а также для очистки каустической соды от железа и марганца, в качестве катализаторов в органическом синтезе и при крекинге нефти и т. д. [c.114]

    Полученные результаты могут быть использованы при создании разделительного процесса, основанного на эффекте изотопически-селективной диссоциации молекул ИК излучением, и для других изотопов. В частности, большой интерес представляет метод ИК фотодиссоциации для разработки процессов разделения изотопов водорода, дейтерия и трития. В этом случае необходимо извлекать НОО из Н2О или ВТО из ВгО не из газовой, а из жидкой фазы. Для того, чтобы избежать энергетически совершенно невыгодного испарения воды и синтеза дейтерий- или тритийсодержащих многоатомных молекул, которые можно диссоциировать ИК излучением, предложено использовать метод изотопного обмена [45]. Схема лазерного разделения изотопов методом фотодиссоциации с использованием изотопного обмена показана на рис. 8.1.9. Специально подобранное оптимальное молекулярное соединение РН, содержащее водород и имеющее требуемые для изотопиче-ски-селективной фотодиссоциации параметры, пропускается через лазерную разделительную ячейку, где происходит облучение газа. Частота излучения лазера выбирается, чтобы происходила селективная диссоциация молекул КО или КТ с требуемым коэффициентом селективности. [c.371]

    Решение этих задач сопровождается расширением научно-исследовательских работ по созданию ряда новых промышленных процессов радиационно-химических, плазмохимических методов синтеза, исиоль-зование лазеров в химических процессах, расширение применения гомогенного катализа, работ по иолупропицаемым мембранам в процессах разделения расширение использования фотохимического инициирования для радикальных реакций хлорирования, сульфоокисления и сульфохлорирования, что позволяет работать при сравнительно низких температурах в области синтеза витаминов, фармацевтических и душистых веществ. [c.9]

    Углеродные нанотрубки обычно имеют диаметр цилиндрической полости 1-6 нм, длина трубок — до нескольких микрометров. Углеродные нанотрубки (НТ) получают различными методами это синтез испарением графита в элеирической дуге (электродуговой метод), синтез испарением металлосодержащего графита с помощью лазера (метод лазерной абляции), каталитический пиролиз углеводородов. [c.258]

    UFg, полученного при использовании диффузионной и центробежной технологий разделения изотопов урана, показана на рис. 9.14. Инфракрасный (ИК) и ультрафиолетовый (УФ) лазеры воздействуют на проходягций газовый поток. Обедненый 238-UF6 направляется в хранилище. Продукт 235-UF6 поступает в бак для фторирования для синтеза UFg. [c.487]


Смотреть страницы где упоминается термин Лазеры в синтезе: [c.181]    [c.116]    [c.100]    [c.132]    [c.495]    [c.199]    [c.380]    [c.636]    [c.120]    [c.103]    [c.120]    [c.7]    [c.100]    [c.34]    [c.467]    [c.35]    [c.192]   
Стереохимия Издание 2 (1988) -- [ c.103 ]




ПОИСК





Смотрите так же термины и статьи:

Лазер

УАС-лазер лазеры



© 2024 chem21.info Реклама на сайте