Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ванадий отделение фосфата

    Вполне удовлетворительное отделение фосфат-иона от четырехвалентного и пятивалентного ванадия достигается осаждением его магнезиальной смесью в присутствии винной кислоты, но обычно этому методу должно предшествовать отделение фосфат-иона в виде фосфоромолибдата аммония. [c.10]

    При анализе сталей используется иногда отделение фосфат-иона от ванадия путем осаждения первого в виде фосфата церия или циркония [4] однако осадки фосфата церия и циркония захватывают ванадий уже при 5%-ном содержании последнего. [c.10]


    В литературе имеются работы по отделению фосфат-иона от различных катионов как на катионитах [5—8], так и анионитах [9—12 есть также ряд работ по отделению ванадия от различных ионов с помощью ионообменных смол [5, 13—15]. [c.11]

    Опытами по разделению четырехвалентного ванадия и фос-< фат-ионов показано, что при г/нонном соотношении четырехвалентного ванадия и фосфат-иона, равном 1 2, 5, и при кислотности исходного раствора от 0,05 до 0,1 н. происходит полное отделение ванадия от фосфат-иона. Хроматографируемый раствор содержал 31,8 мг фосфата и 21,5 мг ванадия (табл. 2). [c.12]

    При отделении фосфат-ионов по разработанной методике из растворов более сложного состава, содержащих кроме ванадия и фосфат-ионов также кальций и железо, оказалось, что кальций может быть количественно отделен в этих условиях вместе с че- [c.13]

    Таким образом, в работе изучена возможность отделения ванадия от фосфат-ионов на анионитах ПЭ-9 и ЭДЭ-ЮП в хлор-форме из сернокислых и солянокислых растворов. Установлено, что в условиях полного поглощения фосфат-ионов (в интервале кислотности от 0,05 до 0,1 н. по серной или соляной кислоте) пятивалентный ванадий поглощается анионитами от 60 до 90% четырехвалентный ванадий в этих условиях полностью проходит в фильтрат, не поглощаясь. [c.14]

    Помехи от урана, ванадия и фосфатов устраняют путем предварительного отделения этих элементов, тантал маскируют винной кислотой. При анализе силикатных пород кремний рекомендуется удалять выпариванием с плавиковой и серной кислотами обычным путем. Ниобий легко отделять от избытка железа, алюминия и других элементов осаждением из раствора сульфатов [c.335]

    Отделение фосфатов трехзарядных катионов, бериллия, титана, циркония, урана, тория и церия от двухзарядных катионов третьей группы, ванадия и катионов первой и второй групп. [c.437]

    Электролиз с применением ртут ного катода является прекрасным ме тодом отделения алюминия, титана циркония, магния, кальция, стронция бария, бериллия, ванадия, фосфата мышьяка и урана от железа, хрома цинка, никеля, кобальта, меди, олова молибдена, висмута и серебра, осаждающихся на ртутном катоде. При этом осаждение ведут из сернокислого раствора. В принципе можно осаждение проводить также из раствора H I, но при этом в электролит необходимо прибавлять гидроксиламин. Схема электролиза с ртутным катодом представлена на рис. 12.6. В качестве анода обычно используют платиновую проволоку. Электролиз проводят при силе тока 5—6 А и напряжении 6—7 В. Конец электролиза определяют капельной пробой на отделяемый элемент. Затем, не прерывая тока, сливают электролит и промывают ртуть водой. Промывные воды присоединяют к электролиту, перемешивают и определяют интересующие компоненты, [c.234]


    Купферон реагирует со многими катионами, образуя труднорастворимые комплексы. Растворимость купферона-тов металлов зависит от кислотности растворов регулируя кислотность, можно провести разделение катионов. Например, в сильнокислом растворе (5—10 %-ной соляной или серной) купфероном осаждаются железо, галлий, гафний, ниобий, палладий, полоний, олово, тантал и титан частично осаждаются висмут, молибден, сурьма, вольфрам. В слабокислом растворе осаждаются висмут, медь, ртуть, молибден, олово, торий, вольфрам. В нейтральной среде осаждаются (в присутствии ацетатного буфера) серебро, алюминий, бериллий, кобальт, хром, марганец, никель, свинец, РЗЭ, таллий и цинк. Купферон дает возможность отделить железо, титан, ванадий и цирконий от алюминия, кобальта, меди, арсенита и фосфата. Его часто используют для отделения мешающих катионов, например железа при определении алюминия, а также железа и ванадия при определении фосфора в феррованадии. [c.165]

    Из сильнокислого раствора титан соосаждается с фосфатом циркония, чем достигается отделение титана от железа (III), хрома, ванадия [c.77]

    Возможность отделения алюминия от других элементов обусловлена тем, что он осаждается оксихинолином из растворов, содержащих а) уксусную I кислоту и ацетат аммония, б) аммиак, в) аммиак и перекись водорода и г) карбонат аммония. В первом случае алюминий отделяется от таких элементов, как магний и бериллий во втором — от фосфатов, арсенатов, бора и фтора в третьем — от молибдена, ванадия, титана, ниобия и тантала и, наконец, в четвертом — от урана. Отделение ряда элементов от алюминия может быть выполнено благодаря тому, ч го алюминий не осаждается оксихинолином из растворов, содержащих тартрат натрия и умеренные количества едкого натра, тогда как медь, кадмий, цинк и магний в этих условиях образуют нерастворимые оксихиноляты [c.149]

    Типичным примером использования ионообменного метода является отделение ванадия (IV) от фосфат-ионов, выполняемое в 0,1 Л/ растворе соляной кислоты после восстановления сернистым газом. Ванадий проходит в вытекающий раствор, а фосфат элюируется 2М HG1 [142]. [c.266]

    Таким простым способом можно определять бериллий в присутствии всех тяжелых металлов железа, алюминия, хрома и малого количества ванадия. Если присутствует хром, то раствор необходимо перед определением прокипятить, чтобы хром перешел в комплексное соединение с комплексоном. По охлаждении раствора поступают, как описано выше. Присутствие обычных анионов— хлоридов, сульфатов и нитратов—не влияет на определение. Фосфаты необходимо удалить осаждением молибдатом аммония, избыток которого не мешает определению бериллия. Не рекомендуется осаждать бериллий в виде фосфата вследствие чрезвычайно затрудненного отделения осадка фильтрованием. [c.93]

    Молибден (VI) количественно экстрагируется хлороформом из 1 М растворов НС1 [25]. Хром(VI) необходимо предварительно восстанавливать, поскольку он окисляет реагент. Ванадий(V) необходимо восстановить до V". Вольфрам (VI) можно замаскировать фосфатом. В методике анализа стали предусмотрено отделение молибдена от Та, Nb и W [26]. [c.106]

    В аналитических целях используют аммоний молибденовокислый для открытия и количественного определения фосфорной кислоты торий азотнокислый — для гравиметрического, титриметрического и колориметрического определения фторидов уранил азотнокислый — для титриметрического определения мышьяка, гравиметрического определения ванадия и как микрохимический реактив на уксусную кислоту и перекись водорода цирконий азотнокислый — для осаждения и отделения малых количеств фосфатов. [c.34]

    Отделить титан от алюминия, хрома, марганца, никеля, урана (VI), фосфора и бора можно осаждением купфероном в сернокислой среде . Осаждение можно проводить также и из виннокислого раствора, который более устойчив в отнощении гидролиза. Совместно с титаном купферон осаждает железо, ванадий, цирконий, ниобий, тантал, уран (IV) и частично вольфрам. От циркония титан может быть отделен осаждением циркония фосфатом натрия или фениларсоновой кислотой в присутствии перекиси водорода  [c.139]

    Для отделения ванадия от урана последний осаждают в виде фосфата. [c.159]

    В слабощелочном растворе ванадат, хромат, молибдат, вольфрамат, арсенат и фосфат можно осадить нитратом одновалентной ртути Это отделение применялось для определения малых количеств ванадия в силикатных породах. [c.160]

    Известно, что основным методом отделения фосфат-ионов от других ионов является осаждение их в виде фосфоромолиб-дата аммония из азотнокислого раствора. Это отделение не приводит к количественному отделению фосфат-ионов от ванадия присутствие пятивалентного ванадия замедляет осуждение фос-форомолибдата аммония и загрязняет осадок [1—3]. [c.10]

    Таким образом, все перечисленные широкоизвестные методы отделения ванадия от фосфат-иона имеют те или иные недостат- [c.10]

    Для устранения мешающего влияния ванадия и др. металлов В, И. Титов и И, И, Волков [157, 184], а также и другие исследователи [197, 748, 818, 820, 975] предложили проводить осаждение в присутствии комплексона П1, удерживающего в растворе основные мешающие элементы—Ре, А1, Сг, Си, N1, редкоземельные элементы и ряд других. Ванадий при кипячении раствора восстанавливается комплексоном П1 из пятивалентного до четырехвалентного, который затем также маскируется избытком комплексона III. Таким образом, осаждение урана фосфатами в присутствии комплексона III позволяет количественно определять уран в сложных по составу растворах, Однакоэтот метод нашел основное применение как способ отделения малых количеств урана от сопутствующих элементов для [c.61]


    И. Е. Старик и А. С. Старик-Смагина [244] для определения урана в количествах 8-10" —2-10 г в различных природных объектах применили для его отделения соосаждение с алюминием в виде гидроокисей с последующим отделением урана от алюминия и железа с помощью карбоната аммония. Полярографирование урана производилось на фоне AI I3 и 0,1 УИ НС1 после повторного соосаждения его с алюминием. Если в материале содержался ванадий, уран предварительно отделяли от него осаждением фосфатом, или ванадий осаждался купфероном. Этот метод очень трудоемкий и должен приводить к потерям некоторого количества урана, вследствие большого числа осаждений и фильтрований. [c.179]

    П. А. Волков [184] для выделения урана нз растворов сложного состава предложил метод, получивший название фосфатного . Метод основан на осаждении урана (IV) из кислых растворов в виде труднорастворимого фосфата урана (IV) U(HP04)a. Для обеспечения большей полноты выделения урана осаждение проводят в присутствии тория или циркония, в результате чего до 1 мкги можно количественно выделить вследствие соосаждения фосфата урана (IV) с фосфатами указанных элементов. Одновременно с этим происходит отделение урана от железа, марганца, ванадия и большинства других элементов. Для восстановления урана (VI) до урана (IV) применяют гидросульфит натрия Na2Sa04, ронгалит Na2H2S204- [c.269]

    Гексацианоферратный метод i. Для определения малых количеств урана в бедных рудах Ю. А. Чернихов и Е. И. Гульдина разработали колориметрический метод основанный на реакции урана с гексацианоферратом (II). Отделение урана от железа и других металлов, дающих с гексацианоферратом (II) окрашенные растворы или нерастворимые соединения, осуществляется электролизом с ртутным катодом. Из раствора после электролиза [реакция на железо с KgFe( N)6 должна быть отрицательной] осаждают уран свободным от карбонатов раствором аммиака в присутствии небольшого количества перекиси водорода. Отфильтрованный осадок промывают горячим 3 %-ным раствором сульфата аммония, содержащим несколько капель раствора аммиака, и затем растворяют в 10 мл горячей 2%-ной (по объему) серной кислоты. Раствор разбавляют в мерной колбе до 100 мл водой, а в случае содержания ванадия уран переосаждают в виде фосфата. Для этого раствор нейтрализуют аммиаком до появления слабой мути, которую растворяют в нескольких каплях 1 н. раствора серной кислоты, разбавляют до 40 мл и прибавляют [c.533]

    Для отделения циркония от титана, алюминия, хрома, кобальта, никеля, меди, урана, ванадия, тория и молибдена, а также от таких малых количеств кремнекислоты и вольфрама, какие могут остаться в растворе после обезвоживания выпариванием с кислотой, применяют осаждение /г-пропиларсоновой кислотой из горячего разбавленного (3 100) солянокислого раствора и последующее нагревание раствора в течение 30— 60 мин. Осадок промывают горячей водой Если присутствуют большие количества железа, как в случае анализа стали, осадок и фильтр разлагают осторожным нагреванием с 10 мл солян(ш кислоты, раствор разбавляют до 100 мл водой и цирконий осаждают "бнова. Осадок можно прокалить в фарфоровом тигле до ркиси 2тО . Олово частично осаждается, но его можно отделить обработкой прокаленного осадка иодидом аммония, как указано на стр. 342. "Если в анализируемом растворе цри-сутствуе.т достаточное для осаждения циркония количество фосфора, выделившийся осадок отфильтровывают и для отделения циркония от фосфат-ионов сплавляют с карбонатом натрия. Плав выщелачивают водой, нерастворимый остаток отфильтровывают, прокаливают, затем сплавляют с пиросульфатом и растворяют плав в воде, содержащей несколько капель серной кислоты. [c.639]

    Осаждение циркония купфероном с последующим прокаливанием осадка до окиси дает точные результаты. Этот метод удобен тем, что в результате прокаливания получается остаток определенного состава, который можно взвешивать, и, кроме того, при атом происходит полное отделение циркония от алюминия, хрома, урана (VI), борной кислоты и малых количеств фосфата. Однако определению циркония купфероновым методом препятствуют многие элементы, например титан, торий, церий (и, возможно, другие редкоземельные металлы), большинство элементов сероводородной группы, железо, ванадий, ниобий, тантал, вольфрам, кремнекислота и уран (IV). [c.643]

    Комплексоно-фосфатный метод отделения урана при его определении в минералах. Переведение урана в раствор осуществляется обработкой навески минерала нагреванием с соляной кислотой и перекисью водорода и последующим выпариванием со смесью серной и азотной кислот. Метод основан на выделении урана в виде фосфата уранила с применением в качестве сооса-дителя соли титана в присутствии комплексона III (натриевая соль ЭДТА) для удержания в растворе других элементов (железа, алюминия, хрома, меди, никеля, лантанидов, ванадия, молибдена и т. д.). Осадок переводится в раствор в виде комплексной соли раствором карбоната натрия. [c.318]

    По окончании разложения раствор разбавляют горячей водой до 50 мл и отфильтровывают от нерастворимой части. Остаток промывают горячей слабой серной кислотой. Из полученного раствора осаждают аммиаком, свободным от углекислоты, в присутствии 4—5 мл 3%-ной перекиси водорода сумму полуторных окислов. Осадок промывают горячим 3 0-ным раствором сернокислого аммония, содержащим несколько капель аммиака, растворяют в горячей серной кислоте (1 99 по объему), беря минимальное количество кислоты. Фильтр промывают тою же кислотой. Объем раствора вместе с промывными водами не должен превышать 50 мл. Раствор перекосят в прибор для электролиза с ртутным катодом. Электролиз ведется до полного удаления из раствора железа. при силе тока 4—5 ампер и вольтаже 6—8 вольт. Испытание на железо производится капельным методом 0,2%-ным раствором КдРе(СЫ)ц. После полного отделения железа раствор сливают, не прерывая тока, и прибор несколько раз смывают водой. В полученном растворе, объем которого обычно составляет 100 мл, снова осаждают алюминий и уран аммиаком в присутствии перекиси водорода. Уран при этом выпадает главным образом в виде ванадата урана. Полученный осадок промывают 3-4 раза горячим 3%-ным раствором сернокислого аммония, содержащим несколько капель аммиака. Промытый осадок растворяют в серной кислоте. (Применение других кислот недотустимо, так как они могут содержать железо. Применяемая серная кислота должна быть проверена на содержание железа). Из полученного сернокислого раствора уран осаждается в виде фосфата для отделения от ванадия (для руд, не содержащих ванадия, осаждение в виде фосфата выпускается, и осадок ураната аммония растворяется в серной кислоте, 0,2%-ной по объему, и колориметрируется). [c.487]

    Это определение было одновременно исследовано несколькими авторами. Согласно Фрицу и Форду [130], торий можно непосредственно титровать комплексонсм, если pH испытуемого раствора поддерживать в интервалах 2,3—3,4. Наиболее четкий переход окраски индикатора наблюдается при pH 2,8. В более кислых растворах (pH ниже 2,1) окраска раствора тория с индикатором слабее, в более щелочных растворах (pH выше 3,5) происходит гидролиз соли тория. Поэтому авторы рекомендуют следующий ход определения к 100 мл раствора, содержаи],его 120—240 мг тория, прибавляют 4 капли 0,05%-ного водного раствора индикатора и добавлением аммиака уменьшают кислотность анализируемого раствора до появления розовой окраски (pH 2,5). Титруют 0,025 М раствором комплексона почти до исчезновения окраски раствора. Затем pH раствора доводят до 3 (при потенциометрическом контроле) и дотитровывают раствором комплексона. Полученный раствор имеет чисто желтый цвет. Целесообразно проводить перемешивание при помощи электромагнитной мешалки. Аналогичным способом определяют и меньшие количества тория (6—50 мг в 25 мл раствора). Определению мешает присутствие железа, висмута, циркония, церия, олова, ванадия, свинца, меди и никеля. Как отмечают авторы, комплексометрическое определение тория приобрело большое значение вследствие возможности удовлетворительного отделения тория от мешающих элементов экстракцией его окисью мезитила (метод разработан Левеном и Гримальди [131]). Экстракцию проводят следующим образом к 1,2 Ж раствору соли тория прибавляют на каждые 10 мл 19 г нитрата алюминия в качестве высаливающего агента и одной экстракцией окисью мезитила отделяют торий от редкоземельных катионов, фторидов и фосфатов. Вместе с торием извлекаются ванадий, уран, цирконий и небольшое количество алюминия. Титрованию тория раствором комплексона не мешают алюминий и уран перед экстракцией тория следует предварительно отделить цирконий и ванадий. [c.363]

    Al ", Fein, Zr v, Tiiv, u , Be", Сгш, Sbi", Pdiv образующие с арсеназо I соединения фиолетового цвета различных оттенков. Ослабляют окраску фосфат-, фторид-, ванадит-ионы, перекись водорода. Поэтому метод можно применять для определения UOl" после отделения мешающих ионов. Салицилат-, сульфосалицилат-и этилендиаминтетраацетат-ионы влияют мало. [c.285]

    Определение алюминия этим методом можно выполнить гюсле предварительного отделения его фосфатным методом для этого осадок фосфата переводят в раствор сплавлением с пиросульфатом калия, растворяют, осаждают купфероном титан, ванадий, следы железа и в фильтрате после разрушения купферона осаждают алюминий окснном. [c.153]

    Посторонние вещества могут заметно влиять на отделение следов по методу образования смешанных кристаллов. Например, хлориды вредно действуют на соосаждение свинца с сульфатом стронция. Так, 82% свинца осаждается при выпадении 50% стронция в 1 н. растворе хлорида калия и только 30% свинца осаждается с 50% стронция, если осаждение производится из 2,5 н. раствора хлорида калия. Неблагоприятное влияние хлоридов можно объяснить образованием комплексного хлорида свинца, который не вступает в решетку сульфата стронция 1. Мышьяк (V) можно соосадить с фосфатом магния и аммония 15, а ванадий (V) с фосфоромолибдатом аммония i . Это все относится к случаям образования смешанных кристаллов. [c.35]

    Метод, пригодный для отделения ванадия от железа, титана и т. п., заключается в сплавлении образца с карбонатом натрия (иногда вместе с небольшим количеством нитрата калия) и вышелачиваняй сплава водой. Молибдат, вольфрамат, фосфат, арсенат, хромат и следы железа переходят в фильтрат вместе с ванадатом. [c.160]

    Хороший метод выделения незначительных количеств ванадая в определенных случаях основан на том, что из слабокислого раствора (рн около 4—5) извлекают хлороформом соединение ванадия с о-оксихинолином V2 b( 9H5N)4 хром (VI) не извлекается После выпаривания хлороформа остаток можно сплавить с карбонатом натрия и перевести таким образом ванадий в ванадат. Железо (III) и молибден (VI) также извлекаются, и поэтому метод не применим к материалам, содержащим железо. Алюминий, силикат, фосфат, фторид и т. п. не препятствуют извлечению ванадия. Вольфрам, дающий с о-оксихинолином осадок (нерастворимый в хлороформе), должен отсутствовать допустимо его присутствие лишь в очень малых количествах. Об отношении других металлов к о-оксихинолину см. на стр. 117. Некоторые результаты анализа силикатов, приведенные на стр. 166, свидетельствуют об удовлетворительном отделении ванадия от 100—200-кратного количества хрома. [c.161]


Смотреть страницы где упоминается термин Ванадий отделение фосфата: [c.15]    [c.267]    [c.268]    [c.270]    [c.267]    [c.268]    [c.269]    [c.270]    [c.531]    [c.383]    [c.111]    [c.339]   
Анализ минералов и руд редких элементов (перевод с дополнениями с третьего английского издания) (1962) -- [ c.223 ]




ПОИСК





Смотрите так же термины и статьи:

Фосфат-ион отделение



© 2025 chem21.info Реклама на сайте