Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Водород строение молекул

    Водородная связь объясняет аномально высокие температуры кипения и плавления ряда веществ, аномальную диэлектрическую проницаемость и не соответствующую строению молекул растворимость. Различают два вида водородной связи межмолекулярную и внутримолекулярную. В первом случае атом водорода связывает два атома, принадлежащих разным молекулам (например, растворителям и масляному сырью), во втором случае оба атома принадлежат одной и той же молекуле. Образование водородной связи наиболее вероятно при пониженных температурах с повышением температуры водородные связи ослабляются или рвутся вследствие усиления теплового движения молекул. [c.217]


    С позиций теории молекулярных орбиталей строение молекулы Н2О можно объяснить следующим образом. Взаимное расположение атомов водорода и кислорода в молекуле воды можно представить с.хемой  [c.312]

    Исходя из строения ато.ма водорода а) указать возможные валентные состояния и степени окисленности водорода б) описать строение молекулы Hj с позиций методов ВС и МО в) обосновать невозможность образования молекулы Нз. [c.219]

    Гидроксиламин - кристаллическое вещество, т. пл. 33 °С, ядовит. Геометрическая форма молекулы гидроксиламина - пирамида, в вершине которой находится атом азота, а в основании располагаются атомы кислорода и водорода. Строение молекулы КНгОН можно представить так  [c.400]

    Пероксид водорода. Строение молекулы. Пероксиды металлов. Окислительно-восстановительные свойства. Применение пероксидов. [c.121]

    Функция Гейтлера — Лондона для молекулы Н2. Работа Гейт-лера и Лондона (1927) была основополагающей в области применения квантовой механики к химии, т. е. в области теории строения молекул. Эти ученые впервые нашли приближенное решение уравнения Шредингера для молекулы Нг, подойдя к ней как к системе, состоящей из двух атомов водорода. Использованная ими приближенная функция для молекулы На строилась из атомных орбиталей 15 каждого атома водорода. В нулевом приближении она имела вид, аналогичный функции для атома гелия (см. 9)  [c.54]

    Атом углерода в метане образует четыре а-связи с водородом. Строение молекулы метана можно представить в виде тетраэдра (рис. 3.62), в центре которого находится атом углерода, а по углам — четыре атома водорода [89]. На рис. 3.63 представлено строение молекулы этана и пропана. [c.247]

    Sb — Bi проявляется также в их соединениях с водородом Н3Э. Строение молекул Н3Э аналогично строению H3N и Н3Р. Но по мере [c.381]

    При описании строения многоэлектронных атомов мы воспользовались наглядным представлением о функциях вероятности, или орбиталях, как об облачных образованиях, которые мы затем заселяли электронами. Чтобы получить представление о строении молекулы, необходимо найти для заданного расположения атомов набор молекулярных орбиталей и затем заселить эти орбитали имеющимися электронами, помещая, как и раньше, на каждую орбиталь не более двух электронов. Но прежде чем мы поступим указанным образом, посмотрим, что происходит, когда два атома водорода сближаются, образуя молекулу. [c.511]

    Соединения одного и того же химического состава, но с различными свойствами называют изомерами. Различие в свойствах изомеров объясняется различием строения пх молекулы, т. е. различным взаимным расположением атомов углерода и водорода в молекуле. [c.10]


    Для гидрирования ароматических соединений метод Фокина— Вилльштеттера применяют редко, но зато его широко используют для гидрирования различных других ненасыщенных соединений. Он дает возможность проводить гидрирование с учетом затраченного водорода [титрование водородом) и, в случае наличия нескольких кратных связей, останавливать реакцию на промежуточных стадиях. Этот метод незаменим при точных работах, связанных с исследованием ненасыщенности сложных природных соединений, кинетикой гидрирования в зависимости от строения молекул и характера заместителей и т. д. [c.346]

    После изложения основных идей и уравнений метода МО обратимся к конкретным примерам его использования при исследовании электронного строения молекул. Начнем с молекулы водорода в основном состоянии. [c.189]

    Соединения, состоящие из углерода и водорода, различающиеся характером связей, числом атомов в молекулах, а также строением молекул. [c.185]

    С органическими соединениями, молекулы которых отличались внушительными размерами, дело обстояло сложнее. Используя методы начала XIX в., было очень тяжело, вероятно и невозможно, установить точную эмпирическую формулу даже такого довольно простого по сравнению, например, с белками органического соединения, как морфин. В настоящее время известно, что в молекуле морфина содержатся 17 атомов углерода, 19 атомов водорода, 3 атома кислорода и 1 атом азота ( ijHisNOa). Эмпирическая формула уксусной кислоты (С2Н4О2) намного проще, чем формула морфина, но и относительно этой формулы в первой половине XIX в. не было единога мнения. Однако, поскольку химики собирались изучать строение молекул органических веществ, начинать им необходимо было с установления эмпирических формул. [c.74]

    Современная теория химической связи, теория строения молекул и кристаллов базируется на квантовой механике молекулы как й атомы, построены из ядер и электронов, и теория химической связи должна учитывать корпускулярно-волновой дуализм микрочастиц. До применения методов квантовой механики к химии не удавалось создать непротиворечивую теорию химической связи. Ее фундамент был заложен в 1927 г. Гейтлером и Лондоном. Выполнив на основе квантовой механики расчет свойств молекулы водорода, они показали, что природа химической связи электрическая, никаких особых сил химического взаимодействия помимо электрических не существует. Действующие в молекуле между ядрами и электронами гравитационные и магнитные силы пренебрежимо малы по сравнению с электрическими. [c.51]

    Более детальное изучение строения молекул асфальтенов удалось провести, используя методы ПМР, ЯМР и ИК-спектроскопии. С помощью комплекса этих методов было установлено следующее для целого ряда асфальтенов, выдел< нных из отечественных и зарубежных нефтей, характерно, что около половины атомов водорода находится в метиленовых и метиновых группах, 15—22% приходится на метильные группы и лишь 8—10% входит в состав ароматических структур. [c.213]

    Кроме наличия функциональной группы с подвижным атомом водорода (окси-, аминогруппы) важно, какова общая структура молекулы антиокислителя (вид заместителей, их расположение). Строение молекулы антиокислителя влияет на подвижность атома водорода функциональной группы и, следовательно, на его реакционную способность заместители, притягивающие электроны, снижают эффективность антиокислителя, и наоборот, заместители, отталкивающие электроны, повышают ее [4, V. 1, сЬ. 4 10 17]. Имеет значение также полярность заместителей и их пространственная конфигурация [17] например, наличие двух заместителей в [c.71]

    Эффективность применения метода моделирования к решению проблемы строения молекул асфальтенов будет тем выше, чем точнее искусственная модель по составу и строению будет воспроизводить молекулу или фрагменты молекулы асфальтенов нефти. Вряд ли можно признать удачной искусственную модель асфальтенов — спрессованную под давлением смесь сажи и синтетического линейного полиэтилена [26]. Сажа представляет собой почти чистый углерод с графитоподобной упаковкой атомов, а в молекулах линейного полимера тысячи атомов углерода соединены в длинную, слегка разветвленную цепь. Ни один из образующих искусственную модель компонентов даже отдаленно не воспроизводит строение молекул асфальтенов, основную часть которых составляет конденсированное полициклическое (преимущественно ароматическое) ядро. Часть периферических атомов водорода в ядре замещена алифатическими или циклическими структурными звеньями. [c.107]

    Тетраоксохлораты (VII) (неудачно называемые еще перхлоратами) весьма многочисленны. Большинство их хорошо растворимо в воде. Тетраоксохлорат (VII) водорода H IO4 — бесцветная жидкость (т. пл. —102°С), способная взрываться. Строение молекулы H IO4 приведено ниже  [c.294]

    Высокомолекулярная часть нефти представляет собой сложную многокомпонентную, в большинстве случаев коллоидную систему, стойкость которой зависит от химической природы и количественных соотношений основных ее составляющих (углеводороды, смолы и асфальтены). Химический состав и строение соединений, входящих в эту систему, необычайно разнообразны. Различие химического строения молекул довольно сильно проявляется даже в углеводородах и становится почти безграничным при переходе от углеводородов к весьма разнообразным гетероорганическим соединениям, в состав которых наряду с углеродом и водородом входят кислород, сера, азот, а нередко и металлы (N1, V, Ге, Мд, Сг, Т1, Со и др.). [c.12]


    В зависимости от строения молекулы сульфиды окисляются с различной скоростью за 1 ч 30 % пероксид водорода превращает алкилсульфиды в сульфоксиды на 90, арилсульфиды на 20—60, тиофены на 5—15% 184]. Восстановление сульфоксидов в исходные сульфиды также зависит от их строения. Максимальная полнота восстановления 80—96 % достигается обработкой сульфоксидов при 20—100°С 200 % избытком алюмогидрида лития в эфиро-бензольном растворе или иодоводородом в смеси с уксусной и соляной кислотами [184]. [c.87]

    Алканы отличаются от углеводородов иного строения относительно большим содержанием водорода в молекуле. [c.187]

    Теплофизические свойства. Важнейшей характеристикой алканов является их энергоемкость (теплота сгорания). Обладая максимально возможным для углеводородов содержанием водорода в молекуле, алканы характеризуются самой большой массовой теплотой сгорания. Так, массовая теплота сгорания метана 50207, гек-сана 45276, эйкозана 44386 кДж/кг. Из-за низкой плотности объемная теплота сгорания алканов меньше, чем у углеводородов иного строения с таким же числом углеродных атомов в молекуле с ростом числа атомов массовая теплота сгорания алканов падает. [c.188]

    Однако следует иметь в виду, что энергии связи С—С и С—Н в молекулах не однозначны. На их значение влияет строение молекулы и местоположение данной связи в молекуле. Опытные данные, например, показывают, что отрыв водорода легче всего [c.173]

    ЧТО огромное разнообразие веществ растительного и животного происхождения образовано весьма небольшим числом химических элементов (углерод, водород, кислород, азот и некоторые другие). К тому же, при одинаковом составе вещества имеют разные свойства. Это означало, что свойства веществ зависят не только от состава, но и от структуры. Если при зарождении химии как науки главным направлением был химический анализ, то с появлением структурной химии — органический синтез. Сегодня структурная химия строится на квантовомеханических представлениях о химической связи, строении молекул и кристаллов, на методах исследования структуры веществ, изучении влияния структуры на свойства веществ и пр. [c.6]

    Помимо воды водород образует еще одно кислородное соединение, которое имеет широкое практическое применение Это пероксид, или перекись, водорода. Строение молекулы П2О2 изображено на рис. 11, для сравнения рядом изображено строение молекулы воды. [c.186]

    Таким образом, для того чтобы отыскать учебную проблему, необходимо проанализировать содержание, а для того чтобы это сделать, нужно прежде всего вскрьггь его структуру, т. е. выделить элементы содержания и связи между ними, а также внутрипредметные связи с предыдущими и последующими темами. Например, при изучении свойств аммиака вначале характеризуют строение атомов элементов азота и водорода, строение молекулы аммиака, определяют степени окисления атомов азота и водорода в аммиаке, а затем химические свойства этого соединения. [c.56]

    Перекись водорода. Строение молекулы Н2О2. Современными физико-химическими методами установлено, что оба атома кислорода в перекиси водорода Н2О2 связаны непосредственно друг с другом неполярной ковалентной связью (рис. 56). Связи же между [c.262]

    В отличие от большинства зарубежных ученых Бутлеров сразу же оценил значение валентности для органических соединений. Каждому атому свойственна определенная валентность, рассуждал он. Вступая в химическое соединение, атомы затрачивают свои валентности на связь друг с другом. Образующаяся при этом молекула — не случайное нагромождение атомов Сцепляясь своими валентностями-руками, атомы вы нуждены располагаться в молекулах соединения в стро гом порядке. В молекуле воды два одновалентных— од норуких атома водорода и один двухвалентный — дву рукий атом кислорода. Если бы водороды сцепились своими единственными руками друг с другом, им нечем было бы связаться с кислородом. Молекула воды не образовалась бы. Значит, в молекуле воды атомы водорода могут быть непосредственно связаны только с кислородом. Водород—кислород — водород. Строение молекулы по определенному плану диктуется самой природой составляющих ее атомов. [c.148]

    Метан (химическая формула СН4) - простейший представитель ряда метановых углеводородов (алканов) с обидей формулой , Y 2n+2 состояпдий из одного атома углерода и четырех атомов водорода. Строение молекулы метана можно представить в виде тетраэдра, в центре которого находится атом углерода, а по углам - четыре атома водорода. Тетраэдрическое строение молекулы метана обусловлено 8р-гибридизацией углеродного атома. Расстояние между атомами углерода и водорода равно 1,09 А, тетраэдрический валентный угол равен 109°. Главное отличие метана от всех других углеводородов - это наличие только связи С-Н, средняя энергия которой составляет 99,3 ккал/моль, и отсутствие углеродных связей С-С. Энергия отрыва первого атома Н еш е выше (104,0 ккал/моль). Отношение числа водородных атомов к углероду в метане составляет 4, в этане - 3, в пропане - 2,66, а в высокомолекулярных парафиновых углеводородах приближается к двум, т.е. метан является самым восстановленным из всех углеводородов. Его нахождение в недрах в восстановительной среде так же закономерно, как углекислого газа в окислительных условиях. Исключительное положение метана в земной коре и повсеместное его распространение можно объяснить еш е и тем, что по сравнению со всеми остальными углеводородами он обладает минимальным уровнем свободной энергии (-12,14 ккал/моль), минимальными значениями энтальпии (теплосодержания, -17,89 ккал/моль) и теплоемкости при постоянном давлении (8,536 ккал/моль град), а также максимумом энтропии (44,50 ед. энтропии). Эти свойства в сочетании с очень низким значением критической температуры (-82,4°С) и высоким значением критического давления (4,58 МПа) (табл. 1.1) ставят метан в особое положение среди остальных углеводородов [1.  [c.5]

    Метан (химическая формула СН4) - простейший представитель ряда метановых углеводородов (алканов) с обидей формулой , Y 2n+2 состояпдий из одного атома углерода и четырех атомов водорода. Строение молекулы метана можно представить в виде тетраэдра, в центре которого находится атом углерода, а по углам - четыре атома водорода. Тетраэдрическое строение молекулы метана обусловлено 8р-гибридизацией углеродного атома. Расстояние между атомами углерода и водорода равно 1,09 А, тетраэдрический валентный угол равен 109°. Главное отличие метана от всех других углеводородов - это наличие только связи С-Н, средняя энергия которой составляет 99,3 ккал/моль, и отсутствие углеродных связей С-С. Энергия отрыва первого атома Н еш е выше (104,0 ккал/моль). Отношение числа водородных атомов к углероду в метане составляет 4, в этане - 3, в пропане [c.5]

    Сольватация — взаимодействие абсорбента и растворяемого вещества с образованием ассоциированных групп частиц. Способность к сольватации объясняется дипольным характером строения молекул. Ярко выражен дипольный характер молекул воды иа атомах водорода имеются эффективные положительные заряды, а на атоме кислорода — эффективный отрицательный заряд. При сольватации заряженные частицы или полярные молекулы растворяемого вещества как бы обволакиваются (окружаются) молекулами поглотителя, соориентированными в соответствии с их зарядами. Сольватация — дипольное взаимодействие молекул абсорбента и абсорбируемого вещества. [c.70]

    Строение молекулы можно представить, построив ее модель. На фиг. 1 показана модель молекулы газообразного углеводорода этилена (формула С2Н4), а на фиг. 2 модель молекулы более сложного жидкого углеводорода—циклогексана, состоящего из 6 атомов углерода и 12 атомов водорода (формула СвН] 2)- [c.8]

    Один из способов описания электронного строения молекулы В2Не, основанный на представлении о локализованных молекулярных орбитах, показан на рис. 13-9. Каждый атом бора использует две 5р -гибридные орбитали для образования связей с двумя концевыми атомами водорода. Каждая из остающихся хр -орбиталей используется для образования трехцентровой связывающей орбитали с Ь-орбиталью атома водорода и. хр -ор-биталью другого атома бора. Согласно такой модели, мостиковые атомы водорода должны быть расположены выше и ниже плоскости, в которой лежат оба фрагмента ВН,, что подтверждается экспериментально. [c.558]

    Углеводороды, входящие в состав нефти, не одинаковы но химическои" й ри )571 67 5ни отличаются друг от друга различным содержанпем углерода и водорода в молекуле, а также строением люлекулы. В нефти содержатся углеводороды 1) парафиновые (насыщенные, или предельные), пли алканы 2) нафтеновые, или цнкланы 3) ароматические. В некоторых нефтях содержатся незначительные количества непредельных углеводородов, но такие нефти очень редки. [c.7]

    При определении формул строения органических соединений очень важно и другое свойство углерода, заключающееся в том, что все четыре валентности атома углерода одинаковы и равноценны между собой. К такому выводу можно прийти уже потому, что никогда не удается получить моно- и дизамещенных производных метана в двух или нескольких формах, а это, очевидно, было бы возможно, если бы четыре атбма водорода в молекуле метана не были бы равноценны, т. е. были бы связаны посредством различных валентных сил.  [c.14]

    Изучение кинетики гидрогенолиза индивидуальных сераорганических соединеппй над кобальто-молибденовым катализатором [198— 201] показало, что скорости протекания реакций гидрогенолиза в сильной степени зависят от строения молекул гидрируемых соединений. Характер изменения скорости реакции гидрогенолиза сераорганических соединений в зависимости от их строения виден из данных, приведенных в табл. 82, где коэффициент а — величина, пропорциональная константе скорости реакции в 0,5%-ных растворах сераорганических соединений. Гидрогенолиз проводился при температуре 375° С п парциальном давлении водорода 33,3 атм. [c.386]

    Большие изменения произошли в изложении квантовой химии и теории химической связи в переводной и отечественной литературе и в преподавании теории строения вещества. Поэтому нам представлялось бесцельным повторно знакомить студентов III курса с качественными представлениями теории валентных связей и электронным строением молекул (форма электронных орбиталей, гибридизация, направленные валентности и др.), изучаемыми ими на I курсе. В то же время в ряде переводных и отечественных учебных пособий появилось вполне доступное изложение приближенных методов расчета молекул, основанных на методе молекулярных орбиталей метод молекулярных орбиталей в приближении Хюккеля (МОХ), теория кристаллического поля, теория поля лигандов и др. В связи с этим изложены количественные квантовохимические расчеты на основе строгого решения уравнения Шрёдингера для атома водорода (введение трех квантовых чисел п, I и [c.3]

    Необычные свойства воды объясняются ее строением. Молекула воды нелинейна — угол между связями Н—О—Н равен 104°27. Связи Н—О ковалентны, однако они полярны, т. е. некоторый положительный заряд несут атомы водорода, а отрицательный — атом кислорода. Вследствие этого связанный атом кислорода способен притягивать атом водорода соседней молекулы с образованием водородной связи, что существенно повышает общую энергию связи. Таким образом, молекулы в воде ассоциированы. В кристаллах льда водородные связи еще сильнее. В силу высокой полярности молекул Н2О вода является растворителем других полярных соединений, не имея себе равных. [c.101]

    Химические свойства воды также определяются ее составом и строением. Молекулу воды можно разрушить только энергичным внешним воздействием. Вода начинает заметно разлагаться только при 2000 °С (термическая диссоциация) или под действием ультрафиолетового излучения (фотохимическая диссоциация). На воду действует также радиоактивное излучение. При этом образуются водород, кислород и пероксид водорода Н2О2. Щелочные и щелочноземельные металлы разлагают воду с выделением водорода при обычной температуре, а магний и цинк — при кипячении. Железо реагирует с водяными парами при красном калении. Вода является одной из причин коррозии — ржавления металлов (с. 156). Благородные металлы с водой не реагируют. [c.101]

    Процесс алкилировання заключается в присоединении олефина к парафину с образованием соответствующего углеводорода более высокой молекулярной массы. С точки зрения строения молекулы, образовавшийся углеводород можно рассматривать как исходный парафин, у которого один атом водорода заменен алкильной группой. Однако основная реакция сопровождается рядом побочных, в результате чего образуется более или менее сложная углеводородная смесь. [c.95]


Смотреть страницы где упоминается термин Водород строение молекул: [c.357]    [c.192]    [c.12]    [c.49]    [c.329]    [c.14]    [c.645]    [c.92]   
Методы получения и некоторые простые реакции присоединения альдегидов и кетонов Ч.1 (0) -- [ c.32 ]




ПОИСК





Смотрите так же термины и статьи:

Водород строение

Молекула строение

Молекулы водорода



© 2025 chem21.info Реклама на сайте