Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Полярность заместителей

    На эффективность алкилфенолов как ингибиторов влияют полярность заместителей и стерический фактор (размеры и конфигурация заместителя в орго-положении) [107]. Ингибитор тем эффективнее, чем меньше полярность заместителя и [c.85]

    ВЛИЯНИЕ ПОЛЯРНОСТИ ЗАМЕСТИТЕЛЯ [c.412]

    Для обсуждения направляющего влияния при электрофильном замещении в ароматическом ядре удобно разделить материал на четыре части влияние полярности заместителя, стерический эффект заместителя, влияние полярности замещающего вещества и стерический эффект заме-щающего вещества. [c.412]


    Ранее уже отмечалось, что замещение в о-положение осложняется стерическими факторами. По этой причине влияние полярности заместителя лучше всего оценивать в единицах отношения тг- ле-замещения, чем в единицах отношения, включающего о-положение [234]. Аналогично активность замещающих групп можно наиболее хорошо оценивать в единицах отношения, не включающего скорость замещения в о-положение. Чтобы избежать этого осложнения, сравнительная скорость замещения [c.423]

    Скорость электрофильного замещения зависит, кроме всего прочего, от полярности заместителей, уже находящихся в ядре, полярности реакционной среды и стерических факторов. Электроноотталкивающие заместители (КО—) способствуют увеличению скорости нитрования по сравнению с чистым бензолом, а электронопритягивающие (—N02, —СООН, МКз, галоиды) —уменьшению  [c.300]

    Введение полярных заместителей в ароматическое ядро изоцианата (атомов галогенов, нитрогрупп и других) повышает его реакционноспособность при взаимодействии с гликолями, вследствие электронооттягивающего эффекта и повышения положительного заряда у атома азота изоцианатной группы. [c.159]

    Кроме наличия функциональной группы с подвижным атомом водорода (окси-, аминогруппы) важно, какова общая структура молекулы антиокислителя (вид заместителей, их расположение). Строение молекулы антиокислителя влияет на подвижность атома водорода функциональной группы и, следовательно, на его реакционную способность заместители, притягивающие электроны, снижают эффективность антиокислителя, и наоборот, заместители, отталкивающие электроны, повышают ее [4, V. 1, сЬ. 4 10 17]. Имеет значение также полярность заместителей и их пространственная конфигурация [17] например, наличие двух заместителей в [c.71]

    Влияние полярных заместителей на реакционную способность субстрата удобно проанализировать на примере хлорзамещенных алканов. Хорошо известны два наиболее существенных эффекта, обусловленных замещением. Во-первых, атомы хлора, перетягивая электронное облако со связей молекулы субстрата, становятся отрицательно заряженными центрами. Во-вторых, повышается стабильность радикала вследствие способности электронов атомов J к сопряжению. Конкуренция этих эффектов имеет существенное значение при определении реакционных свойств субстрата, атакуемого нуклеофильным, электрофильным или радикальным реагентом. [c.151]

    Фуппы (-СОО -NHз и др.), а гидратация полярных заместителей - ориентацией молекул воды в результате образования водородных связей. Молекулы гидратно-связанной белком воды можно представить в виде монослоя вокруг ионизированных И полярных групп полипептида, в то время как гидрофобные ра- [c.359]


    Присутствие полярного заместителя в молекуле мономера влияет не только на скорость роста макрорадикала, но и на строение макромолекулы. При полимеризации такого мономера конечное звено макрорадикала также поляризовано, поэтому при- [c.112]

    Во многих случаях двойные связи в молекуле диолефина инициируются при различных условиях. Рост цепи при полимеризации таких мономеров происходит вначале вследствие размыкания только одной, наиболее ослабленной, двойной связи. Благодаря сопряжению или влиянию полярного заместителя образующаяся макромолекула сохранит двойные связи в каждом звене и будет иметь линейное строение. Изменением дальнейших условий полимеризации можно вызвать разрушение оставшихся в макромолекуле двойных связей и продолжить процесс вплоть до образования [c.115]

    Для оценки реакционной способности некоторых мономеров (л1- и п-замещенные стиролы) при сополимеризации справедлива известная зависимость Гаммета, связывающая активность реагентов с константами ст и р, характеризующими полярность заместителей и тип реакции, [c.178]

    Вернемся к опыту с цепью, моделирующей молекулярный клубок. Если цепь гибкая, набрана из мелких звеньев, то перемещение одного звена на 1 см приведет к перемещению относительно небольшого участка цепи. Если цепь жесткая (набрана из длинных звеньев), то перемещение одного звена на то же расстояние приведет к перемещению большего отрезка цепи. Чем более полярны заместители в макромолекуле, тем больше барьер вращения, тем сильнее взаимодействие между соседними группами атомов. Более полярную молекулу можно моделировать цепью из более длинных сегментов, менее полярную — цепью из более коротких сегментов. [c.96]

    Потенциальный барьер молекул с полярными заместителями увеличивается в результате взаимодействия атомов, принадлежащих одной молекуле (внутримолекулярное взаимодействие), и атомов одной молекулы с атомами другой (межмолекулярное взаимодействие). [c.188]

    Существенное влияние на способность к полимеризации оказывает расположение в мономере кратных связей, а также расположение, количество и тип заместителей. Выше уже указывалось, что наиболее склонны к полимеризации соединения с сопряженными двойными связями (стр. 81) и непредельные соединения, имеющие при атоме с кратной связью заместитель, вызывающий поляризацию этой связи (стр. 100). Поляризация двойной связи пропорциональна полярности заместителей. На склонность к полимеризации влияет также объем заместителя при двойной связи. Если радиус замещающей группы велик, то реакционная способность сильно понижается вследствие пространственных затруднений. [c.444]

    Полярные заместители в макромолекулах — такие, как атомы [c.485]

    Из предложенного механизма реакции (XLVI) очевидно, что выражение скорости реакции замещения должно содержать коэффициент, соответствующий стойкости индивидуального я-комплекса. При обсуждении сравнительных скоростей замещения в различные положения молекулы этот коэффициент будет исключен и наблюдаемые ориентации можно непосредственно связать с относительными скоростями замещения в различные положения. Кроме того, из имеющихся данных видно, что этот коэффициент относительно невелик и мало зависит от структуры ароматического соединения. Следовательно, в случае сильно полярных заместителей, которые сильно влияют на стойкость тг-комплекса, этот коэффициент для <т-комплекса становится столь незначительным, что им можно пренебречь  [c.418]

    Влияние полярности заместителя. Большинство надежных данных по направляющему влиянию получено при изучении реакции нитрования [табл. 3]. Поэтому нет ничего удивительного, что главное внимание было сосредоточено на изучении влияния заместителей в кольце на ход дальнейшего зал1ещения и сравнительно мало внимания уделялось изучению влияния заместителей в определении направления замещения. Было замечено, однако, что при алкилировании по Фриделю-Крафтсу толуола получается очень большое количество. и-изомера. Например, при введе НИИ изопропила в толуол образуется 29,8% л -изопропилтолуола (табл. 7). Пытались объяснить этот результат при помощи нормального алкили рования до 1,3,4-триалкилпроизводного с последующей потерей одной алкильной группы в положении 4 [123, 256]. Одпако нри помощи пря< мых экспериментальных исследований в настоящее время установлено, что i-изомер, образующийся в результате прямого алкилирования толуола [84], не люжет рассматриваться как продукт вторичной изомеризации или дэалкилирования. [c.421]

    С другой стороны, энергетические эффекты на одну макромолекулу высокополимера весьма велики в соответствии с большим числом контактирующих звек ьев. Поэтому ничтожно малой положительной свободной энергии взаимодействия звеньев различной природы достаточно для того, чтобы полимеры не смогли растворяться друг в друге. Несовместимость полимеров является поэтому скорее правилом, чем исключением и наблюдается не только при смешении полимеров в массе, но и в хороших растворителях. Наблюдается даже расслоение сополимеров одинаковой химической природы, но с широкой гетерогенностью по составу. Исключение составляют полимеры с полярными заместителями, для которых взаимодействие разнородных звеньев энергетически выгодно и которые поэтому хорошо совмещаются друг с другом. [c.34]


    Гетеролитический распад связи кремний — алкил также облегчают полярные заместители в радикале, даже находящиеся в у-положе-нии, как в 3,3,3-трифторпропилсилоксанах [14]. [c.464]

    В растворе при перегруппировках смешанных силоксанов, содержащих звенья (СНз)25 0 (Д) и СНз(СРзСН2СН2)510 (Ф), равновесная концентрация циклов возрастает пропорционально мольной доле звеньев Ф [4,28, 30], а при перегруппировках смешанных циклотетрасилоксанов с одним полярным заместителем К" в цикле увеличивается в ряду К" [28]  [c.470]

    При совместной полимеризации мономеров, близких по активности или содержащих различные полярные заместители, один из которых является донором электронов, а другой их акцептором, образуются макромолекулы сополимера, в среднем сохраняющие молярное соотношение мономеров в исходной смеси. В этом случае соотношения звеньев различных мономеров в макромолекулах сополимера, образующихся в начале и в конце реакции, аналогичны. Примером таких систем может служить сополимер винилиденхлорида и метилакрплата. [c.118]

    Особо следует остановиться на предельно допустимых концентрациях примесей титана в каучуках. Этот вопрос имеет большое практическое значение, так как большинство катализаторов стереоспецифической полимеризации содержат в своем составе трехвалентный титан. Известно, что окисление трехвалентного титана проходит через стадию образования свободных радикалов. При окислении трехвалентного титана кислородом наблюдается деструкция полибутадиена и полиизопрена [43]. В этой же работе было показано, что многие антиоксиданты, применяемые для стабилизации каучуков, не оказывают ингибирующего действия на процесс деструкции, вызываемый окислением трехвалентного титана кислородом. В этом случае ингибиторами являются такие соединения, как нитробензол, азобензол, бензохинон (которые, как известно, окисляют трехвалентный титан в четырехвалентный) или дифенилпикрилгидрозил, образующий с треххлористым титаном нерастворимый комплекс, выпадаюп1,ип в осадок. Совокупность данных по влиянию титана на стабильность полибутадиена и полиизопрена позволяет считать, что предельно допустимая концентрация этого металла лежит близко к 0,01% (масс.). Для каучуков, имеющих в основной цепи полярные заместители (например, для нитрильных каучуков) предельно допустимые концентрации примесей металлов переменной валентности могут быть несколько более высокими (это не относится к примеси железа). [c.632]

    Для неозона Д, неозона А, параоксинеозона, диафена ФП, бисалкофена БП, алкофена БП имеются данные [72] по давлению пх паров при различных температурах над 3%-ными растворами этих веществ в ряде каучуков (СКИ, СКД, СКМС-ЗОАРК, СКЭПТ, СКН-18, СКН-26 и СКН-40). Давлеппе насыщенного пара зависит не только от природы антиоксиданта, но и от структуры каучука. Практически для всех изученных антиоксидантов давление насыщенного пара над их растворами в бутадиен-нитрильных каучуках в 2—10 раз ниже, чем над растворами в каучуках, не имеющих полярных заместителей. [c.644]

    Полярные заместители в молекулах производных этилена или бутадиена вызывают поляризацию двойной связи, что еще более повышает активность мономера. Поляризация двойной связи в молекулах мономеров возрастает с увеличением асимметричности расположения заместителей относительно положения двойной связи в соединении. Так, при полимеризации хлористого винилидена требуется меньшая затрата энергии, чем при полимеризации хлористого винила, несмотря на возрастание стерических препятствий в первом случае. В молекулах дихлор тилена и хлористого винилидена количество атомов хлора одинаково, но в дихлорэтилене они расположены симметрично относительно [c.110]

    Влияние полярности заместителей и сопряжения двойных связей наряду со стсрическим эффектом способствует образованию полимерных молекул с относительно однородным сочетанием отдельных звеньев, го есть макромолекул более или менее одинакового строения. При полимеризации винильных соединений присоединение несимметрично построенной молекулы мономера к макрорадикалу может происходить по двум направлениям  [c.113]

    Растущие требования к качеству каучуков и резин вызывают тоиаки новых антиоксидантов. Известно, что для этого пригодны различные соединения, в том числе ароматические амины. Эффективность вторичных ароматических аминов как ингибиторов окисления каучука ояределяется легкостью отрыва водородного атома аминогруппы (I). Введение полярных заместителей (ОСНз, ОН) в о- и -положения iK амииогруппе положительно влияет на ингибирующую способность аминов. [c.172]

    Влияние природы растворителя на спектр ЭПР может быть объяснено механизмом [136], учитывающим возникновение слабых обменных взаимодействий при столкновении молекул в растворе. При сближении двух парамагнитных частиц обменное взаимодействие между ними может вызвать нарушение фазы ларморовых вращений спинов вокруг внешнего магнитного поля. В работах [ 137 -139] показано, что в полярных растворителях ширина сверхтонких компонент меньше, а константа сверхтонкого расщепления больше, по сравнению со значениями констант в неполярных растворителях. Этот эффект приписан возникновению комплексов радикал — растворитель. Образование комплексов свободный радикал — растворитель может быть обусловлено различными причинами, в частности водородной связью [ 138]. В ряде случаев возможно также образование молекулярных комплексов с растворителем, акцепторами, ионами металлов. Последние нередко приводят к стабилизации ион-радикалов [140, 141]. Авторы [141] считают, что молекулы растворителя локализуются на полярных заместителях или гетероатомах. [c.120]

    В эластомерах с основными цепями одинакового строения, но с различными заместителями диффузия и проницаемость газов зависят от межмолекулярного взаимодействия, которое характеризуется значениями энергии когезии. При введении в молекулы полярных заместителей (-СМ, -СООН, -КНг и др.) наблюдается уменьшение газопроницаемости, вызываемое увеличением межмолекулярното взаимодействия. Наличие поперечных связей уменьшает проницаемость, прежде всего за счет уменьшения коэффициента диффузии. Зависимость эта не линейная. [c.115]

    Вклад гидрофобного взаимодействия в свободную энергию сорбции органической молекулы на ферменте можно оценить теоретически [261. Однако более плодотворными для оценки прочности гидрофобной связи оказались некоторые эмпирические критерии. В их основу положено представление, что образование комплекса белок — органический лиганд, возникаюш,его в результате гидрофобных взаимодействий, можно рассматривать фактически как термодинамически выгодный перенос аполярной молекулы (или ее фрагмента) из воды в органическую фазу беЛка. Величина поверхности связываемой молекулы [40, 41] — это весьма частный критерий, поскольку на его основании нельзя сравнивать комплексующие свойства соединений, содержащих в молекуле различного рода полярные заместители. Недостаточным критерием гидрофобности ингибиторов или субстратов следует считать также и растворимость их в воде. Использование этой величи- [c.26]

    Наличие в макромолекуле полярных заместителей, наприйер —С1, —ОН, —СЫ, —СООН, делает молекулу менее гибкой, так как взаимодействие между этими заместителями повышает энергетический барьер. Кроме того, полярные заместители обусловливают увеличение взаимодействия с полярными группами соседних молекул. Между этими группами, являющимися диполями, могут возникать как значительные межмолекулярные силы (например, в поливинилхлориде между атомами хлора), так и водородная связь, если имеются соответствующие условия (например, в полимерах акриловой кислоты между карбоксильными группами). Все это приводит к уменьшению гибкости цепи и повышает жесткость полимеров. К полимерам с цепями ограниченной гибкости (из-за содержания в них полярных групп) можно отнести целлюлозу, поливинилхлорид, полиакрилонитрил и т. д. [c.431]

    Для объяснения стереорегулирующего действия гомогенных каталитических систем при полимеризации мономеров с полярным заместителем предполагается многоцентровая координация мономера. [c.282]

    Повышение энергетического барьера приводит к увеличению жесткости макромолекул. Наименьшим барьером вращения и наибольшей гибкостью характеризуются цепи неполярных незамещенных углеводородов (Л У=1-ьЗ кДж/моль). Введение полярных заместителей (— ONH—, — ONH2—, —(ЮОН, —ОН, —С1 и др.) увеличивает высоту энергетического барьера и повышает жесткость цепей. Это объясняется тем, что введение полярных групп усиливает взаимодействие звеньев как внутри макромолекул (внутримолекулярные взаимодействия), так и между соседними макромолекулами (межмолекулярные взаимодействия). Таким образом, гибкость цепей полимеров зависит от химического строения цепи, природы заместителей, их числа и распределения по длине цепи, числа звеньев в цепи. Кроме того, гибкость цепей [c.462]

    Хроматография сильнополяркых веществ на полярном адсорбенте из неполярного и слабополярного элюента влияние внутримолекулярной водородной связи, экранирования полярных заместителей неполярными и удлинения алкильной цепи [c.292]

    Таким образом, удерживание о-, м- и -изомеров с различными функциональными группами определяется природой заместителей, их возможным взаимодействием между собой в оруо-положении, их влиянием на распределение электронной плотности бензольного кольца (электронодонорный или электроакцепторный характер заместителя), а также пространственным затруднением для специфического взаимодействия полярного заместителя с силанольными группами поверхности кремнезема, создаваемым неполярным заместителем в орго-положении к полярному заместителю. Указанные закономерности порядка удерживания о-, м- и -изомеров позволяют предсказать порядок удерживания изомеров исследуемых соединений, учитывая характер и положение функциональных групп. [c.295]

    Если в молекуле углеводорода часть атомов водорода заменена полярными заместителями — такими, как атомы Вг, С1 или группы —ОН, —СЫ, —СООН, то механические свойства полимера резко меняются. Полярные заместители повышают потенциальный барьер молекулы и тем самым увеличивают жесткость цепей. Поэтому такие полимеры, как поливинилхлорид, поли-нитрилакрил, поливинилацетат, целлюлоза и другие, при комнатной температуре неэластичны. [c.188]

    Соединения типа ВгСНг—СНВг—СбН4Х-п были использованы как удобные модели для оценки электростатического влияния полярных заместителей на конформацию соединений, поскольку находящийся в пара-положении бензольного ядра заместитель X на пространственное взаимодействие фе-нильной группы с другими заместителями не влияет, а меняет лишь характер диполя [28]. [c.247]


Смотреть страницы где упоминается термин Полярность заместителей: [c.473]    [c.61]    [c.34]    [c.34]    [c.140]    [c.140]    [c.60]    [c.205]    [c.187]    [c.93]    [c.486]    [c.486]    [c.189]   
Методы сравнительного расчета физико - химических свойств (1965) -- [ c.101 ]




ПОИСК





Смотрите так же термины и статьи:

ВНУТРИМОЛЕКУЛЯРНЫЕ ВЛИЯНИЯ И ДЕЙСТВИЕ ПОЛЯРНЫХ ЗАМЕСТИТЕЛЕЙ

Влияние заместителей и полярных групп на состояние органических молекул

Голлемана аномалия ориентация, влияние полярных заместителей

Заместители полярные эффекты

Заместители полярные, кинетические эффект

Заместители при фосфоре полярность

Карбонильная группа полярные влияния заместителей

Количественный учет полярных влияний заместителей. Линейные корреляции свободной энергии

Константа полярного заместителя

Константы заместителей Тафта, свободные от прямого полярного сопряжения

Константы полярности заместителей для групп, непосредственно связанных с реакционным центром

Метильный полярный эффект заместителей

Перемещение полярных заместителей или

Перемещение полярных заместителей или функциональных групп

Полярные влияния заместителей на электронную плотность и реакционную способность ароматических соединений

Полярные заместители

Полярные и пространственные влияния заместителей в углеводородной части

Полярные и стерические эффекты заместителей

Пономарев, A. JI. Клебанский. Синтез кремнеорганических соединений с полярными заместителями в органическом радикале и изучение их стабильности

Сополимеризация полярности заместителей

Таблица констант полярности заместителя

вииил хлортиофена. Вииил хлортиофен, сополимеризация полярности заместителей

випил хлортиофена полярности заместителей

метилдекалина с двумя полярными заместителям



© 2025 chem21.info Реклама на сайте