Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Парофазный крекинг выход газов

    В СССР В. В. Пигулевский и Н. Рудакова [30, 31] детально изучили алкилирование уксусной кислоты пропиленом, полученным из газов парофазного крекинга, в присутствии серной кислоты. Первоначально авторы превращали пропилен в изопропиловый спирт через изопропилсерную кислоту и затем из спирта и уксусной кислоты получали изопропилацетат. Однако в дальнейшем они установили, что тот же изопропилацетат получается с хорошим выходом при поглощении непосредственно пропилена эквимолекулярной смесью уксусной и серной кислот. [c.8]


    Прочные позиции завоевало производство акрилонитрила прямым соединением цианистого водорода с ацетиленом, впервые осуществленное в промышленном масштабе в ФРГ. На новых установках ацетилен получают как из карбида кальция, так и процессами окислительного крекинга природного газа. Реакцию проводят в жидкой фазе. Парофазная реакция также возможна, но, по-видимому, менее целесообразна в техническом отношении. Цианистый водород и ацетилен пропускают в раствор катализатора, содержащий хлористую ртуть, воду и достаточное количество соляной кислоты для поддержания кислотной среды. Образующиеся продукты выделяются из реакционной смеси в виде паров и улавливаются конденсацией. Выход акрилонитрила составляет 80% наряду с ним образуются многочисленные побочные продукты, в том числе ацетальдегид, лактонитрил, винилацетилен и цианобутадиен. При последующей очистке акрилонитрила особые трудности вызывает присутствие двух второстепенных побочных продуктов — дивинилацетилена и метилвинилкетона. Однако акрилонптрил, получаемый на современных установках, работающих по описанному процессу, удовлетворяет самым жестким требованиям, выдвигаемым при дальнейшей его полимеризации. Недавно построенная установка в результате существенных усовершенствований [7] обеспечивает экономичную работу, давая повышенные выходы целевого продукта при меньшем образовании побочных продуктов. , [c.228]

    Выход крекинг-бензина при однократной операции крекинга, в промышленных смешаннофазных крекинг-процессах составляет около 20% за цикл для крекинга сырья, состоящего из свежего газойля и рисайкл-газойля. В парофазном крекинге выходы за цикл ниже, обычно не превышают 10%. Как было указано выше, выход крекинг-бензина для парофазного процесса не равен выходу бензина в смешаннофазном процессе вследствие значительно большего образования газа. Общее превращение сырья, соответствующее 20% выходу бензина при смешаннофазном крекинге и 10% выходу при парофазном процессе, может считаться приблизительно одинаковым. Средние результаты для различных степеней крекирования за одну операцию при крекинге под давлением даны в табл. 63. Образование газа и смолы быстро увеличивается с углублением степени крекирования за цикл. [c.143]

    При парофазном крекинге выход газа значительно увеличивается с повышением температуры. В то время как при 580° выход газа составляет около 200 при 650— [c.17]


    При парофазном крекинге выход газа увеличивается с повышением температуры крекинга были получены следующие данные по выходу крекинг-газов [11]  [c.94]

    Выше приводится схема (рис. 481) установки каталитической полимеризации фирмы Юниверсал Ойл Продактс Ко. В качестве сырья применялся крекинг-газ с крекинг-установки Даббса. Исходное сырье подается в трубчатую печь, где нагревается до 230—260° С, и при давлении на выходе из печи 7—13 ат проходит через четыре последовательно соединенные реакционные камеры с катализатором. В реакционных камерах происходит реакция полимеризации. Выходящие из последней реакционной камеры Продукты полимеризации проходят в холодильник, а из последнего—в газосепаратор, в котором жидкие продукты отделяются от газообразных. Насосом жидкие продукты полимеризации подаются на ректификацию н ректификационную колонну с глухим паровым змеевиком внизу. Подводимый к змеевику водяной пар конденсируется и конденсат отводится через конденсационный трапп. Тем пература верха колонны контролируется парциальны.м конденсатором, установленным непосредственно на верху колонны. Колонна, ио существу, является стабилизатором. Стабилизованный полимер-бензин отводится со дна стабилизатора через холодильник в приемник. Нестабильные пары и газы отводятся к конденсатору, где пары конденсируются, и конденсат вместе с газом поступает в газосепаратор. В газосепараторе отделившийся газ может быть использован в качестве рисайкла, для чего вспомогательным компрессором подается в трубчатую печь. Выход жидких продуктов полимеризации зависит от состава применяемого сырья. При работе на газах парофазного крекинга выход достигает 88 % от исходного сырья процесс веде -ся при 260° С и давлении 13 ат, при работе на газах жидкофазного крекинга выход доходит до 79%, ог исходного сырья. Процесс проводится при температуре 232 С и давлении 11,6 ат. [c.691]

    В условиях жидкофазного крекинга (при 450—480 °С) образуется 5— 6 вес.% газов при парофазном крекинге (500—550 °С) выход газообразных продуктов составляет около 25 вес.%. Соответственно из 1 т продуктов переработки нефти при жидкофазном крекинге получается около 2,5 кг этилена, 4 кг пропилена при парофазном крекинге выход этих продуктов составляет соответственно около 30 и 37 кг. [c.495]

    Тем не менее давление заметно влияет на состав продуктов посредством изменения скорости и характера вторичных реакций. В парофазных системах повышение давления увеличивает скорость полимеризации олефинов. В системах со смешанной фазой увеличивается объем жидкости (и, стало быть, — время пребывания в зоне крекинга той части углеводородов, которая представляет собой жидкость) бимолекулярные вторичные реакции замедляются вследствие происходящего разбавления. Так, повышение давления при неизменных времени выдержки п температуре приводит к увеличению выхода кокса и образованию тяжелых полимеров из содержащихся в бензине олефинов. Это обстоятельство наряду с увеличением выхода газа [112] приводит к высоким выходам бензинов в результате усиленной полимеризации [101]. [c.314]

    Существуют и промежуточные формы термического крекинга, например парофазный крекинг, осуществляемый при низком давлении и температуре около 600° С. Парофазный крекинг предназначен для производства бензина одновременно получаются и большие выходы газа, богатого непредельными углеводородами. В настоящее время промышленных установок парофазного крекинга не соору- кают (подробнее об этом см. стр. 117), поэтому мы не будем останавливаться на этом процессе. [c.10]

    Выход бензина при жидкофазном крекинге заметно больше, чем при парофазном, но качество его (октановое число) значительно ниже. Выход газа выше при нарофазном крекинге и достигает 200—250 на тонну перерабатываемого сырья, а при жидкофазном крекинге составляет только 40—60 м /т. [c.95]

    Таким образом в парофазном крекинге при 600° С максимальный выход крекинг-бензина на один пробег не превышает 23—24%. Как можно видеть из цифр газообразования, выход газа очень высок даже в первой стадии крекинга. [c.110]

    Сопоставление табл. 37 и 38 показывает, что время, необходимое для образования 20% бензина при крекинге под давлением и 10% бензина при парофазном процессе, одно и то же. Газообразование в первом случае составляет только 1 % (табл. 47), в то время как во втором случае оно составляет около 10% (табл. 30). Таким образом, общий выход газа и бензина при крекинге под давлением (образуется 20% бензина) и при парофазном процессе (образуется 10% бензина) приблизительно один и тот же. [c.119]

    Меньшие выходы бензина и большие выходы газа, характерные для парофазного крекинга в сравнении с низкотемпературным крекингом под давлением, обусловлены не какими-либо конструктивными недо-статкамп, а самой химической природой процесса. Естественно, поэтому, что для получения максимальных выходов бензина необходимо применять крекинг под давлением. Что касается высокотемпературного крекинга, то он сможет найти применение для специальных процессов, например для получения олефинов, диолефинов и т. д. [c.60]


    Все приведенные выше выводы правильны для крекинга под давле- нием при относительно умеренных температурах и сравнительно небольшом газообразовании. Даже при рисайклинге выходы газа обычно не превышают 10% вес. В парофазном процессе при высоких темпе- [c.121]

    Как уже было показано в главе 1, применение вакуума или избытка пара при термическом разложении бутана или циклогексана значительно увеличивает выход бутадиена. Очевидно, роль пара в этих реакциях такая же, как и при крекинге бутана, описанном выше. Образующийся бутадиен при высокой температуре защищается низким парциальным давлением или молекулами пара от дальнейших бимолекулярных реакций полимеризации и конденсации. Применение инертных газов в качестве носителей тепла в парофазном крекинге будет рассмотрено в главе четвертой. [c.165]

    Парофазный крекинг даёт в среднем 266 газа на I сырья при максимальном выходе бензина в процессе до кокса. [c.379]

    Хотя практически щт всех системах крекинг-процесса образуется значительное количество постоянного газа (или крекинг-газа), выход и состав полученного таким образом газа зависит от целого ряда факторов, как то от типа установки, от условий работы, а особенно — от температуры и от длительности нагревания. Природа исходного сырья как будто не оказывает значительного влияния ни на выход, ни на состав постоянных газов. Это положение справедливо, особенно—в случае применения высокотемпературного или парофазного-крекинга, при котором оказалось, что такое различное сырье, как пенсильванский газойль и сырые сла] цевые масла дают в результате крекинга газ одинакового состава. [c.130]

    Парофазный крекинг (обычное или пониженное давление, 600°) дает непредельно-ароматический бензин, содержащий 40—50% олефинов, 40—60% ароматических углеводородов и до 10% парафинов. Выход бензина обычно меньше, чем при жидкофазном крекинге. Образуется большое количество газов, содержащих 40—50% олефинов. [c.17]

    Газообразные продукты парофазного крекинга и пиролиза характеризуются наибо,лее высоким содержанием непреде.льных углеводородов. Содержание последних в этих газах повышается до 30—35% (по объему) от их состава и выше, общие же выходы на газ от исходного сырья для [c.413]

    Брукс [12] указывает, что при парофазном крекинге выход газа увеличивается с повышением температуры крекинга из 1 исходного сырья получается газа при 580° 232 м , при 650—700° 356—446 л и при 750— 850° 535 м . Увеличение объема газа объясняется повышением общего весового выхода газообразных продуктов и увеличением относительного содержания легких углеводородов. Из каталитических процессов крекинг в псевдоожиженном слое катализатора приводит к значительно большему выходу газа, чем крекинг с неподвижным слоем катализатора (процесс Гудри). [c.112]

    При рисайклинге в смешаннофазном крекинге отношения между выходами газа и бензина в объемных процентах близки к 1 6, при практически получаемых выходах бензина от 50 до 65%. Отношение ниже для более низких выходов бензина, соответствующих меньшим выходам газа, при менее глубоких степенях крекинга. В парофазном крекинге отношение газа к бензину более высокое и близко к 1 2 или 1 3 при высоких выходах бензина. Согласно де-Флорез [5] при крекинге в паровой фазе пенсильванского газойля (уд. веса 0,825 при 15°) под давлением 36 кг1см было получено 61,4% бензина и 29,2% газа, а при крекинге калифорнийского газойля (уд. веса 0,865) получено 53,89% бензина и 26,97% газа, т. е. отношения очень близки к 1 2. Указанные выходы даны в объемн. процентах. [c.131]

    С другой стороны, давление по принципу Лешателье воздействует на направление вторичных реакций. Под действием давления 1) уменьшается выход сухих газов, 2) усиливаются реакции полимеризации непредельных углеводородов, содержащихся как в сырье, так и в продуктах реакции. Эти выводы подтверждаются анализом состава конечных продуктов, в частности, бензина и газов (см. ниже табл. 33 и 34). В продуктах парофазного процесса оказывается значительно больше непредельных соединений, чем в продуктах жидкофазного крекинга. Другим подтверждением сделанного выше утверждения является то обстоятельство, что при жидкофазном крекинге выход газа составляет 10—11 %, а при парофазном — 23—25 %.  [c.102]

    Особенно пригоден для парофазного крекинга метод Филлипса [55), При применении этого метода можно на 50% увеличить выход этилена при крекинге к-бутана и на 25% выход этнлена и ацетилена нри крекинге газов, богатых этаном. Кроме того, степень нреврап],ения может быть доведена до 91 % за один проход, чего никогда не удается добиться нри обычном крекировании в трубчатых нагревателях. [c.89]

    Разумеется, все эти недостатки не являются непреодоли-"мыми. Большой выход газа, который еще недавно считался основным недостатком парофазного крекинга, сейчас в некоторых случаях является даже желательным (когда газ является сырьем для химической промышленности). Все же этот вид крекинга не имеет Широкого промышленного распространения. [c.138]

    Мандельбаум [55] указывает, что о рациональности применения процесса Грея можно судить по масштабу его применения в промышленности, который со Времени его появления в 1924 г. уже к 1933 г. достиг 16 тыс. т в день крекинг-бензина. Он описывает процесс Грея следующим образом 1) бензиновая фракция выделяется из крекинг-дестиллата 2) выделенная фракция в парообразном состоянии приходит в соприкосновение с адсорбентом, обладающим способностью селективно полимеризовать нежелательные углеводороды 3) с адсорбента непрерывно удаляют обработанные пары и образовавшиеся полимеры 4) от обработанных паров отделяют полимеры >) наконец, обработанные пары конденсируют. Применяют адсорбенты с величиной зерна от 60 до 90 иди от 30 до 60 меш последние наиболее эффективны. Наилучший материал для обра-ботки — это фуллерова земля и аналогичные вещества. Реакция усиливается при повышении температуры и при повышении давления общие выходы, выраженные количеством бензина на 1 т адсорбента, обработанного до определенных стандартных качеств, приблизительно пропорциональны абсолютному давлению. Например, на двух соседних установках производилась очистка в одном случае под давлением 10 ат, а в другом 1,7 ат. Первая перерабатывала 950 т крекинг-бензина на 1 т фуллеровой земли, тогда как вторая установка с меньшим давлением не давала желаемого эффекта при переработке более 200—250 т т I т земли. Далее, по данным Мандельбаума, для получения удовлетворительных результатов очистки достаточно сравнительно кратковременной обработки, увеличение продолжительности контакта обычно не улучшает обработки. В башни Грея могут поступать пары, получающиеся непосредственно при крекинге или из установки для вторичной перегонки. Башни можно экспло-атировать последовательно или параллельно предпочтительнее пользоваться последовательным порядком. Если углеводороды поступают в башню Грея непосредственно из крекинг-установки и содержат большое количество газа, то работа адсорбента быстро ухудшается. Поэтому парофазный крекинг-бензин удобнее перерабатывать после конденсации дестиллата при повторной перегонке. Установки Грея конструируют с таким расчетом, чтобы от 5 до 10% получаемого бензина конденсировалось или возвращалось в башню для вымывания полимеров из глины. Бензиновая часть полимеров отпаривается и регенерируется. Цвет и содержание смол в обработанном бензине сохраняются на постоянном уровне, т. е. оказываются стабильными. После переработки приблизительно 150, 450 и 800 т бензина на 1 т глины (в зависимости от вида перерабатываемого бензина) качество обработанного бензина становится неудовлетворительным и содержание смол быстро повышается. Адсорбенты, применяемые в процессе Грея, мало влияют на содержащиеся в бензине сернистые соединения. Это делает необходимой дополнительную обработку крекинг-дестиллатов, содержащих серу. На фиг. 66 изображена схема процесса Грея (Мандельбаум [55]). [c.726]

    Кроме широко распространенного жидкофазного крекинга в промышленности находят применение и другие процессы термической переработки жидких топлив. Одним из таких процессов является парофазный крекинг — пиролиз, в результате которого имеет место выход больших количеств углеводородных газов с теплотой сгорания 45,0—47,0 Мдж1м . [c.20]

    При пиролизе нефтепродуктов при 715—750° С выходы бутадиена изменяются от 2,5% для мазута до 11% для бензина . Содержание бутадиена в бутен-бутадиеновой фракции газов парофазного крекинга 18—22% и газов пиролиза 20—25% на фракцию . Очень высокие выходы бутадиена получаются при крекинге шестичленных цикланов. Так, при крекинге циклогексана и его гомологов при 700—750° С в парах воды (парциальное давление gHij в 25- -70 мм рт. ст.) были получены такие выходы бутадиена [c.405]

    Гениссе и Реутер [14] проводили повторный крекинг рисайкла в паровой фазе при 600° С в течение 0,083 мин. Выходы газа и бензина падали с каждым последующим крекингом, при этом выходы смол и кокса быстро увеличивались. Содержание олефинов в крекинг-газах, непрерывно уменьшалось, а содержание водорода увеличивалось с продолжением рисайклинга. Таким образом, результаты повторных крекингов в парофазном процессе практически те же, что и при крекинге под давлением. [c.143]

    При парофазном крекинге на каждый баррель (159 j ) нефти, подвергнутый крекингу, нормально образуется 28 газа. В противоположность этому, при жидкофазном крекинге образуется только от 3 до 13 ж газа на каждый баррель. Нормально при парофазном крекинге образуются, грубо говоря, одинаковые весовые количества газа и моторного топлива если же температуру крекинга поднять до 700° или выше, выход газа значительно возрастает. Высокотемпературный крекинг, особенно низкосортного углеводородного сырья, вполне может приобрести экономическое значение для целей получения больших количеств газа, богатого олеф1 новыми углеводородами. [c.130]

    В табл. 102 приведены типичные анализы газов крекинга и пиролиза бакинских заводов [28], а именно газ жидкофазного крекинга с установки системы Винклер — Коха при работе на сураханской пгшафинистом мазуте и режиме 495° и 35 ат давления газ парофазного крекинга с шав. завода Советский крекинг системы инж. Шухова—Капелюшникова при работе иа тяжелом бензине или керосине прямой гонки (температура при выходе из печи 620°) газ пиролиза при температурном режиме 660—670° и работе либо на крекинг-керосине (реторты), либо на легкой солярке (газогенераторы). [c.436]

    Высокотемпературный парофазный крекинг пропана и нефтяных фракций в присутствии водяного пара является обычным методом получения этилена и пропилена для нефтехимического синтеза. При этом неочищенные газы всегда содержат определенное количество ацетилена, метилацетилена, пропадиена и остаточного бутадиена. Подобные примеси нежелательны при нефтехимической переработке олефинов, и их обычно гидрируют до соответствующих моноолефинов, увеличивая таким образом общий выход продуктов. Гидрированию могут быть подвергнуты как неочищенные, так и частично или полностью очищенные газы (олефиновые концентраты). Для гидрирования очищенных и неочищенных газов используют различные катализаторы, и мы рассмотрим катализаторы этих двух типов. Обработку неочищенных газов проводят обычно в относительно жестких условиях в присутствии грубодисперсных катализаторов, при очистке концентрированных олефинов применяют более мягкие условия и более селективные катализаторы. В обоих случаях на поверхности катализатора происходит отложение полимерного материала, в результате активность его снижается. Для очистки катализатора от полимера каждые 3-6 месяцев проводят его регенерацию водяным паром и воздухом или воздухом и азотом. После 5-10 регенераций катализатор необходимо заменять. Чтобы компенсировать падение активности, вызванное осаждением полимерного материала на катализаторе, повыщают температуру реакции на 20-30°С. На многих заводах замена катализатора, поверхность которого покрылась полимерной пленкой, свежей порцией экономически более выгодна, если иметь в виду убытки, обусловленные потерей времени на регенерацию. [c.189]


Смотреть страницы где упоминается термин Парофазный крекинг выход газов: [c.15]    [c.17]    [c.241]    [c.139]    [c.146]    [c.174]    [c.116]    [c.118]    [c.122]    [c.173]    [c.245]    [c.467]    [c.414]    [c.419]   
Общая химическая технология топлива (1941) -- [ c.683 ]

Общая химическая технология топлива Издание 2 (1947) -- [ c.440 ]




ПОИСК





Смотрите так же термины и статьи:

Крекинг парофазный

Парофазный крекинг крекинг



© 2025 chem21.info Реклама на сайте