Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Хроматография кинетическая

    В физико-химических методах анализа используются химические или электрохимические реакции и анализ ведется на основе исследования зависимости между химическим составом и каким-либо физическим свойством равновесной или неравновесной химической системы. Соответственно различают методы анализа фотометрические (или фотометрия), хроматографические (или хроматография), кинетические и электрохимические. [c.4]


    Первый в мировой литературе практикум, позволяющий ознакомиться с современными методами физико-химического эксперимента в органической химии. Рассмотрены такие методы, как оптическая и радиоспектроскопия, газожидкостная хроматография, кинетические, изотопные и др. В приложении приведена программа для электронно-вычислительных машин на языке ФОРТРАН для кинетических расчетов, а также содержатся рекомендации по использованию различных физико-химических приборов. [c.312]

    Кинетические закономерности реакции изомеризации н-пентана на алюмоплатиновом катализаторе,промотированном фтором, были изучены в связи с разработкой технологии процесса [38]. Была установлена зависимость выхода изопентана от мольного отношения водород н-пен-тан, рабочего давления, температуры и объемной скорости подачи н-пентана. Было изучено также влияние парциальных давлений н-пентана и водорода на скорость протекания реакции. Состав исходного сырья и продуктов реакции определялся с помощью газожидкостной хроматографии. Реакция протекала с высокой селективностью выход продуктов распада не превышал 1%. Диаметр зерна катализатора составлял 1,5 мм. Для описания полученных закономерностей бьшо использовано уравнение для случая мономолекулярной обратимой гетерогенной реакции, протекающей в струе [39]. Преобразование уравнения дает следующее выражение для константы скорости реакции  [c.20]

    Так как для разных по геометрической или электронной структуре молекул значения констант Генри, по крайней мере при подходящей температуре, обязательно различаются (поскольку они связаны с энергией молекулярного взаимодействия, разной для разных молекул, см. стр. 487 сл.), то теория равновесной хроматографии в области изотермы распределения Генри приводит к выводу об обязательном газо-хроматографическом разделении любых компонентов. В действительности этому мешают, во-первых, как мы уже видели, отклонения изотермы распределения (адсорбции, растворения) от изотермы Генри и, во-вторых, как мы увидим в дальнейшем, диффузионные и кинетические факторы. Эти причины приводят к асимметричному искажению и размыванию хроматографической полосы, что ведет к наложению полос близких по свойствам веществ друг на друга и поэтому мешает четкому разделению компонентов. [c.557]

    Напомним, что приведенные рассуждения относятся хотя и к неидеальной, но к равновесной хроматографии, что предполагает отсутствие нетермодинамического (диффузионного и кинетического) размывания и искажения хроматографической полосы, т. е. образование совершенно вертикального переднего фронта в случае изотермы адсорбции, обраш,енной вогнутостью к оси [c.591]


    В задачу автора не входит рассмотрение основ газовой хроматографии, так как соответствующий материал достаточно хорошо освещен в отечественной литературе [22, 32, 501. Нам хотелось бы здесь коротко проанализировать те задачи, которые в настоящее время могут быть решены газохроматографическим анализом такой сложной смеси соединений, какой являются циклические углеводороды нефтей. (В предыдущих главах уже были приведены некоторые примеры использования газовой хроматографии при исследовании термодинамических и кинетических параметров реакционной способности углеводородов.) [c.336]

    Детальное исследование зависимости выхода продуктов крекинга бутанов при низких давлениях от температуры, давления и глубины распада было проведено методом газовой хроматографии [165]. Исследования были выполнены на установке для проведения кинетических, и аналитических измерений, описание которой можно найти в работах [96,. 163]. В этой работе состав продуктов крекинга бутанов изучен при различной температуре (548 и 573°) в диапазоне давлений 20—180 мм рт. ст., глубинах разложения бутана 10—90% и изобутана 15—60%, т. е в условиях, близких к тем, при которых исследовалась кинетика заторможенного крекинга бутанов добавками пропилена и изобутилена [56, 57, 106]. [c.99]

    Возможности ТСХ как аналитического или исследовательского метода могут быть существенно расширены благодаря сочетанию с инструментальными методами, такими, например, как спектрофо-тометрия, полярография, радиоактивационный и кинетический методы. Кроме того, весьма полезным является сочетание ТСХ с колоночной хроматографией. [c.121]

    Среди методов физико-химического анализа для кинетических исследований широко применяются спектроскопия, масс-спектрометрия и хроматография. [c.333]

    Амперометрическое титрование Бумажная хроматография Высокочастотное титрование Ионообменная хроматофафия Кинетический метод Кондуктометрическое титрование Нефелометрический метод Полярографический метод Потенциометрическое титрование Пламенная эмиссионная спектроскопия Спектральный [c.319]

    Так как значения коэффициента Генри для различных органических веществ, даже относящихся к одному гомологическому ряду, различаются, то теория равновесной хроматографии утверждает возможность разделения любых по сложности смесей на их составляющие. Встречающиеся отклонения объясняются криволинейностью изотермы распределения либо диффузионными и кинетическими факторами, приводящими к размыванию полос. [c.102]

    В настоящее время практически ни одно кинетическое исследование не обходится без применения хроматографических методов, особенно широкое распространение получила газо-жидкостная хроматография, обладающая высокой чувствительностью и большой универсальностью. Все более внедряются в кинетические исследования различные варианты термографических и калориметрических методов, которые практически незаменимы при исследовании реакций в твердой фазе и при низких температурах. [c.3]

    В кинетических исследованиях наиболее широкое распространение получила газовая хроматография. В последнее, время все чаще Начин жидкостная хроматография. Без [c.287]

    При введении пробы необходимо обеспечить идентичность ее состава с анализируемой смесью. При кинетических исследованиях, где приходится проводить многократный анализ близких по со ставу смесей, особенно важна воспроизводимость величины пробы. Объем или масса вводимой пробы должны изменяться в пределах 1—3%. Для уменьшения размывания пиков на хроматограмме из-за перегрузки колонки необходимо работать с минимально возможными пробами и обеспечивать их наименьшее время ввода. Вводимая проба не должна также нарушать установленный режим хроматографа. [c.297]

    Для изучения механизма реакций перспективно также их исследование в хроматографическом режиме, когда процесс осуществляется непосредственно в условиях разделения реагентов и продуктов реакции. Возможны также кинетические исследования, когда один из компонентов реакции применяется как стационарная фаза. Однако основное применение в химической кинетике газожидкостная хроматография находит как высокочувствительный и универсальный метод анализа сложных и многокомпонентных смесей. [c.308]

    В настоящее время практически ни одно кинетическое исследование не обходится без применения газо-жидкостной хроматографии, обладающей высокой чувствительностью и большой универсальностью. Определенные перспективы открываются благодаря применению в химии резонансной гамма-спектроскопии. Все шире проникают в кинетические исследования различные математические методы обработки результатов. К ним относятся и анализ полученных спектров ЭПР и ЯМР, и решение систем дифференциальных уравнений, описывающих кинетику сложных реакций с использованием числовых и аналоговых электронных вычислительных машин. [c.4]


    Применение газовой хроматографии для исследования кинетики и механизма органических реакций началось лишь в 1959 г. В настоящее время без этого метода не обходится практически ни одно кинетическое исследование. Газовая хроматография дает возможность фиксировать изменение концентрации всех компонентов, образующихся в ходе реакции, что делает ее практически незаменимой при изучении кинетики сложных химических процессов. [c.137]

    В настоящее время существуют два подхода к использованию газовой хроматографии в кинетических исследованиях. Первый из них предполагает проведение [c.370]

    Для разделения веществ успешно применяют не только кинетические и равновесные методы, но и такие методы, в которых равновесные принципы сочетаются с кинетическими. Из них наиболее распространена хроматография (раздел 18.4). При проведении зонной плавки повышением температуры создают зону жидкой фазы. Распределение веществ между фазами происходит при непрерывном перемешивании жидкофазной зоны. [c.248]

    Как известно, теплопроводность вещества характеризуется коэффициентом Я, т. е. количеством тепла, которое передается в 1 сек через 1 см пластины толщиной 1 см при разности температур 1° размерность кал град см сек . Теплопроводность определяется только прямой передачей энергии от молекулы к молекуле, но не конвекцией или излучением. Из кинетической теории газов следует, что в области давлений, имеющих место в газовой хроматографии, теплопроводность не зависит от давления. Однако все газы обнаруживают сильный рост Я, при увеличении температуры. [c.117]

    Газовая хроматография в значительной степени способствовала развитию физической химии. В частности, она открыла новые возможности для исследования кинетических и термодинамических свойств растворов, т. е. области, которая раньше считалась малодоступной из-за аналитических трудностей. [c.445]

    Исто ри ческий обзор. Теория и параметры газовой адсорбционной хроматографии. Кинетические и термодинамичеокие аспекты хроматографии. [c.21]

    В изложенной выше теории равновесной хроматографии были рассмотрг-ны только те искажения хроматографической полосы (обострение фронта и растягивание тыла или наоборот), которые вызывались отклонениями изотермы распределения (адсорбции или растворения, от закона Генри. Но даже и при соблюдении закона Генри хроматографическая полоса при движении вдоль колонки должна размываться. Это происходит вследствие продольной диффузии (вдоль и навстречу потока газа) молекул компонентов газовой смеси, переноса и диффузии их вокруг зерен насадки, а также диффузии в поры (так называемой внутренней диффузии). Кроме этого, молекулы компонента смеси, попап-шие в неподвижную фазу, должны отставать от его молекул, переносимых в потоке газа, вследствие конечной скорости адсорбции и десорбции на твердой или жидкой иоверхности, наличия поверхностной диффузии (вдоль поверхности), а в случае газо-жидкостной хроматографии еще и вследствие диффузии (поперечной и продольной) внутри неподвижной жидкой пленки, а также ввиду адсорбции и десорбции на носителе неподвижной жидкости. Все эти разнообразные диффузионные и кинетические явления приводят к тому, что в отношении элементарных процессов удерживания в неподвижной фазе и возвращения в движущийся газ-носитель разные молекулы данного компонента окажутся п разных условиях и, следовательно, будут перемещаться вдоль колонки с разными скоростями, что неизбежно приведет к размыванию хроматографической полосы—к снижению и расширению пика. Уже одно перечисление причин размывания хроматографической полосы показывает, насколько сложны диффузионные и кинетические процессы в колонке. Учитывая некоторую неопределенность геометрии колонок, по крайней мере колонок с набивкой (колебания в форме и размерах зерен, в их пористости и упаковке, в толщине пленки неподвижной жидкости, в доступности ее поверхности или поверхности адсорбента в порах, можно оценить влияние диффузионных и кинетических факторов на форму хроматографической полосы лишь весьма приближенно. Однако даже такая приближенная теория очень полезна, так как она позволяет выяснить хотя бы относительную роль различных диффузионных и кинетических факторов, влияющих на размывание, и указать тем самым пути ослабления этого влияния. [c.575]

    Среди методов физико-химического анализа для кинетических исследований 1нироко применяются спектроскопня, масс-спектрометрия н хроматография. [c.333]

    Тщательное исследование процессов окислительной регенерации и сорбции на единичных зернах можно осуществить, ком1бинируя методы гравиметрии, термографии и хроматографии. Как будет показано ниже, при этом удается получать все данные, необходимые для последующих кинетических и тепловых расчетов регенерации. [c.4]

    Сведений о термодинамике и кинетике процесса комплексообразования твердых парафиновых углеводородов с карбамидом мало. Влияние ряда факторов, в том числе расхода карбамида на скорость и глубину процесса комплексообразования, исследовано на смесях н-парафинов С18—С20 с чистотой 987о (по данным газожидкостной хроматографии). В качестве растворителя применяли бензол, в качестве активаторов—метанол и этанол. Степень извлечения н-парафина определяли по составу компонентов жидкой фазы, для чего использован показатель преломления бинарных смесей с различным содержанием н-парафина. На кинетических кривых зависимости содержания углеводорода в комплексе (на примере н-октадекана) от расхода карбамида (рис. 94, 95) можно выделить два участка, первый из которых характеризуется быстрым ростом С18 в комплексе, что соответствует начальному периоду процесса, а второй указывает на установление равновесного состояния и выражается прямой, параллельной оси абсцисс. [c.226]

    Методика проведения изомеризациив кинетическом режиме . Экспериментальное осуществление изомеризации несложно. К исследуемому углеводороду (0,5 —1 г) добавляется катализатор — 5 %-ный раствор бромистого алюминия в н. гексане, и кинетический репер — этилциклогексан или этилциклопентан. Количество добавляемого катализатора составляет 5—10% (считая на А1Вгз)в зависимости от его активности и от скорости превращения исследуемого углеводорода. Реакционная смесь помещается в термостатированный реактор, откуда периодически отбираются пробы. Отобранные пробы взбалтываются с водной щелочью, катализатор нри этом разрушается, а продукты реакции исследуются методами газовой хроматографии. Подробности эксперимента можно найти в работах [16 — 18]. [c.149]

    Книга рассчитана на студентов химических специальностей униыерситетов. В ней изложены теоретические основы и практические методы количественного анализа, описаны приемы работы, аппаратура, приборы, методы вычисления результатов анализа. Значительное место отведено современным методам анализа физическим, кинетическим (каталитическим), фотометрии, полярографии, потен-циометрии, амперометрическому титрованию, кулонометрии, ионному обмену, распределительной и газовой хроматографии, соосажденню и гомогенному осаждению, экстракции органическими растворителями, комплексонометрическому титрованию. [c.2]

    В пособии излагаются теоретические основы наиболее важных, распространенных и перспективных физико-химических методов анализа эмиссионного спектрального анализа, абсорбционной спектроскопии, люминесцентного анализа, спектроскопии ЯМР, нефелометрии и турбидиметрии, радиометрических методов аналнза, копдуктометрии, потенциометрии, полярографии, электролиза и кулоно-метрии, кинетических методов анализа, хроматографии, масс-снектрального апа- [c.343]

    Бурно развивающаяся новая техника потребовала быстрого совершенствования методов анализа. Однако классические методы анализа вследствие их малой чувствительности часто оказываются совершенно непригодными для определения малых количеств примесей. Возникшая проблема разработки методов определения ультрамалых количеств примесей оказалась практически разрешенной широким использованием разнообразных физических и физнко-хнмическнх методов анализа хроматографии, ионного обмена, экстракции, спектроскопии, люминесцентного анализа, полярографии, рентгеноскоги и, масс-спектро.метрии, радиометрических, кинетических и других методов анализа, основанных на применении прецизионных физических и ([ изико-химнческнх приборов. [c.20]

    ИОНЫ появляются в следующей последовательности А, В, С, D. В реальных условиях из-за влияния кинетического фактора при малом различии селективности ионита к отдельным ионам наблюдается некоторое перекрывание зон. Получаемые в результате этого смешанные фракции могут быть повторно разделены. Примером вытеснительной хроматографии ионов может служить разделение смеси Na l и КС1 на Н-форме сульфокатионита с использованием в качестве вытесняющего раствора СаСЬ. Полученные в этом случае выходные кривые (рис. XI. 5, б) иллюстрируют появление отдельных зон по мере пропускания раствора СаС1г через колонку, первоначально содержавшую в верхней части смешанную зону ионы Na+ и К+. Вытеснительную хроматографию успешно применяют для препаративных целей. [c.689]

    Одна из главных задач теории неравновесной хроматографии — изучение причин размывания хроматографических полос. Это явление может быть обусловлено диффузионными и кинетическими факторами. Их влияние на процесс разделения может быть настолько велико, что даже при значительной разнице коэффициентов распределения вещества могут не разделиться. Явление размывания полос в реальной хроматографической колонке очень сложно и может быть описано лишь приближенно на основе теорий, устанавливающих зависимость между мерой размывания и указанными факторами. Для описания неравновесной ГХ чаще всего используются теория теоретических тарелок и теория эффективной диффузии. Обе теории основаны на допущении о том, что хроматографический процесс протекает в линейной области изотермы распределения (п ГЖХ) или изотермы адсорбции (в ГАХ), Количественной мерой размывания в первом случае является высота теоретической тарелки Н, во втором — эффективный коэффициент диффузии Дэфф. [c.334]

    Метод отбора проб широко используется в кинетических исследованиях для измерения констант скоростей и их отношений. В первом случае определяются абсолютные значения эффективных констант скоростей расходования исходных реагентов и (или) накопления продуктов реакции. Применение хроматографии имеет здесь ряд преимуществ перед другими аналитическими методами. На базе хроматографии удается достичь иь1-сокой чувствительности, что позволяет работать на малых глубинах пpeвpaщ tlия. Относительно небольшой размер пробы дает возможность проводить реакции с микроколичествами реагентов. Существенным достоинством хроматографии является возможность одновременного определения больнюго количества компонентов реакционной смеси. Рассмотрим в качестве примера глубокое хлорирование этана. В этой реакции происходит следующая последовательность превращений  [c.371]

    Кинетические Инверсионная вольтам перометрия Эмиссионный спектра ль ный анализ жидкостей Атомно-абсорбционные и флуоресцентные (пламя) Атомно-абсорбционные и флуоресцентные (бесплам.) азовап хроматография хелатов Рентгенофлуоресцентные — [c.526]


Смотреть страницы где упоминается термин Хроматография кинетическая: [c.91]    [c.308]    [c.8]    [c.451]    [c.589]    [c.19]    [c.60]    [c.24]    [c.5]    [c.372]    [c.254]   
Руководство по аналитической химии (1975) -- [ c.346 ]




ПОИСК





Смотрите так же термины и статьи:

Аналитическое применение кинетического метода в газовой хроматографии

Кинетические исследования на основе газовой хроматографии

Хроматография кинетическая теория



© 2025 chem21.info Реклама на сайте