Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Выход продукта и селективность

    В проточном реакторе полного смешения мгновенно устанавливается постоянная концентрация реагентов, и, следовательно, А = Ак т. е. конечной степени превращения. Поэтому зависимость между выходом продукта, селективностью и степенью превращения выражается уравнением [c.101]

    Выход продукта, селективность Р [c.6]

    Исследование селективности гидрогенолиза г(ыс-1,3-диметилциклопентана по связям а, а и б показало 157], что, в соответствии с работой [140], преимущественным направлением реакции является разрыв кольца по единственной неэкранированной связи б (образование 2,4-диметилпентана). Весьма интересно, что гидрогенолиз по связи а" проходит в заметно большей степени, чем по связи а. Действительно, в интервале 260— 310 °С отношение выходов продуктов гидрогенолиза цис- [c.144]


    Увеличение содержания фтора в катализаторе наряду с повышением изомеризующей активности приводило и к возрастанию селективности, что выражалось в уменьшении выхода продуктов распада (метана и бута-нов) при равной глубине изомеризации (рис. 2.5). Увеличение селектив- [c.49]

    Цеолит Выход продуктов, % Селективность по метилцикло пентенам. % [c.114]

    Оптимальный означает наилучший . И когда говорят оптимальный режим , оптимальный реактор , - следует пояснять в каком смысле наилучший, какой показатель имеет наилучшее значение. Поскольку такие показатели могут быть различны объем реактора, степень преврашения, выход продукта, селективность процесса и т.д., то и задач определения оптимального режима также может быть несколько в зависимости от того, какой показатель оптимизируют Задача оптимизации возникает почти на каждом этапе разработки процесса и реактора. Например, при разработке или выборе катализатора определяют такую оптимальную пористую структуру, которая могла бы обеспечить максимальную скорость преврашения на зерне катализатора при выборе реактора подбирают оптимальные конструктивные размеры, обеспечивающие минимизацию общих затрат на него, а затем определяют оптимальные концентрации и температуру, обеспечивающие максимальное превращение или выход продукта и т.д. Оптимизация химических процессов и реакторов - многовариантная задача. [c.203]

    Выход продукта (селективность, избирательность) — отношение его количества (массы, объема) к теоретически возможному количеству, (массе, объему) в расчете на превращенное сырье  [c.15]

    Повышение давления при неизменном времени реакции и прочих равных условиях снижает глубину изомеризации. При повышении давления от 0,63 до 2,2 МПа (от 6,3 до 22,0 кгс/см ) селективность изомеризации существенно повышается, а при дальнейшем повышении давления до 4,9 МПа (49 кгс/см ) незначительно снижается, видимо, в результате ускорения гидрокрекинга на металлических активных центрах. Изменение в широких пределах мольного соотношения водород углеводород не влияет на выход продуктов изомеризации. Влияние соотношения водород н-гексан на результаты изомеризации н-гексана видно из следующих данных  [c.239]

    Выход продукта и селективность [c.49]

    Максимальная селективность достигается в момент начала реакции, поскольку тогда Ср = О, а затем постепенно уменьшается до нуля. В этом случае нас интересует не столько селективность, сколько максимальный выход продукта Р, получаемого в реакторе данного типа. [c.341]


    В установках третьего поколения повышение выхода и качества продуктов, селективности и продолжительности межремонтного цикла достигается за счет перевода установок на полиметаллические катализаторы, а также понижения давления, оптимизации режима, усовершенствования стадии подготовки сырья платформинга, регенерации и реактивации катализатора. [c.158]

    Кинетические закономерности реакции изомеризации н-пентана на алюмоплатиновом катализаторе,промотированном фтором, были изучены в связи с разработкой технологии процесса [38]. Была установлена зависимость выхода изопентана от мольного отношения водород н-пен-тан, рабочего давления, температуры и объемной скорости подачи н-пентана. Было изучено также влияние парциальных давлений н-пентана и водорода на скорость протекания реакции. Состав исходного сырья и продуктов реакции определялся с помощью газожидкостной хроматографии. Реакция протекала с высокой селективностью выход продуктов распада не превышал 1%. Диаметр зерна катализатора составлял 1,5 мм. Для описания полученных закономерностей бьшо использовано уравнение для случая мономолекулярной обратимой гетерогенной реакции, протекающей в струе [39]. Преобразование уравнения дает следующее выражение для константы скорости реакции  [c.20]

    При переработке низкотемпературного изомеризата пентан-гексановой фракции был получен изокомпонент с октановым числом 88,5, что на 7,5 пункта выше, чем у исходного сырья. Выход жидких продуктов селективного гидрокрекинга при этом составлял 82,0%мас. [c.117]

    Низкотемпературная изомеризация н-бутана на алюмоплатиновых хлорированных катализаторах проводится в газовой фазе при давлении водорода на неподвижном слое катализатора при температурах 150—220 С, при этом обеспечивается выход изобутана за проход свыше 50%. Высокая селективность катализатора сводит побочные реакции до минимума, выход продуктов реакции, содержащих бутаны, достигает 97%, соответственно низок расход водорода. Отсутствие побочных реакций обеспечивает малую величину коксообразования, допускает поддержание низкого мольного отношения водород сырье без отрицательного влияния на продолжительность работы катализатора. [c.180]

    При выборе распределения воздуха следует также учитывать образование побочных продуктов. Подача избытка воздуха на последние стадии системы оксихлорирования приводит к образованию большего количества СО и СО2. Поэтому для обеспечения максимальных выходов и селективности нужно подавать на первые стадии оксихлорирования как можно больше воздуха, насколько это допускают соображения безопасности. [c.282]

    Все изученные металлы в испытанных пределах концентраций вызывают увеличение коксообразования и объемного выхода газа. Наиболее резко выход этих продуктов возрастает при содержании иа катализаторе малых количеств металла (до 0,1—0,2 вес. %) В дальнейшем увеличение становится небольшим (см. рис. 69). При нанесении на катализатор 0,5 вес. % никеля выход кокса достигает 15,8%, а выход газа — 13,4 л выход при крекинге на свежем катализаторе соответственно 6,6% и 4,6 л. По степени возрастающего влияния на изменение в выходах продуктов крекинга металлы располагаются в той же последовательности, в какой они вызывают уменьшение активности катализатора свинец <хром< <железо, ванадий, молибден < медь, кобальте никель. Катализаторы с повышенным содержанием металлов имеют низкую селективность, оцениваемую отношением бензин кокс. Селективность катализаторов, активированных микродобавками металлов, отличается от исходной незначительно. [c.158]

    В работе [275] утверждается, что молярное отношение водорода к сырью не оказывает заметного влияния на выход продуктов риформинга. С этим заключением согласуются результаты, полуденные при каталитическом риформинге гептана и циклогексана, в соответствии с которыми скорости общего и отдельных превращений углеводородов не зависят от степени их разбавления водородом [11, 57]. Однако по данным [276] уменьшение кратности циркуляции ВСГ при- каталитическом риформинге бензиновой фракции 62—105 °С приводит к увеличению выхода ароматических углеводородов и повышению селективности процесса. [c.147]

    Для селективных процессов, когда выход продукта или образование побочных продуктов существенно зависит от температурного интервала, в котором протекает процесс, требования к однородности потока в слое катализатора возрастают [3]. [c.132]

    В любом случае выход продукта и его качество очень высоки, так как селективность каждой из ступеней достигает 95—98%. [c.41]

    Еще больще снижается выход продуктов конденсации и увеличивается селективность процесса при подаче в зону реакции образующегося дифенила в количестве, достаточном для достижения термодинамического равновесия бензол — дифенил. Расчетные термодинамические равновесные концентрации системы бензол — [c.310]


    Математические модели третьей группы представляют собой систему алгебраических уравнений из которых одно, базовое, связывает режимные координаты с общей глубиной превращения сырья, а остальные описывают селективность процесса, т. е. выходы продуктов крекинга в зависимости от общей глубины превращения. [c.100]

    Выход продукта, степень превращения сырья и селективность характеризуют глубину протекания химико-технологи-ческого процесса, его полноту и направленность в сторону образования целевого продукта. [c.81]

    Зависимость содержания и-кси-лола в продуктах изомеризации от выхода продуктов крекинга и диспропорционирования при различном давлении процесса показана на рис. 4,12. Сырье было следующего состава (в вес, %) этилбензол 13, п-ксилол 10 л-ксилол 53 о-ксилол 24. Процесс проводили с целью получения п-ксилола при постоянной объемной скорости подачи сырья 0,5 ч 1 и 400—500 °С. Приведенные данные показывают, что повышение давления в процессе при постоянной объемной скорости подачи сырья (условное время контакта при повышении давления увеличивается) приводит к снижению селективности изомеризации вследствие большего количества образующихся побочных продуктов. [c.163]

    Рен.табельность процесса производства характеризуется следующими технико-экономическими показателями расходным коэффициентом и степенью превращения выходом продукта и селективностью качеством продукции производительностью и мощностью аппаратуры интен-с1Шностью процесса или аппарата себестоимостью продукта II прибылью. [c.44]

    Глубина протекания реакции, от которой зависят стернь использовании сырья и другие показатели химико--ехиологического процесса, характеризуется степенью превращения, выходом продукта и селективностью. [c.45]

    Роль носителя в реакции гидрогенолиза циклопентана и его простейших гомологов в присутствии различных платиновых катализаторов исследована в работах [143, 151, 189—191]. Оказалось, что селективность гидрогенолиза метил- и этилциклопентанов по связям а, б и в (см. с. 123) и соответствующие им значения кажущихся энергий активации (Е) в значительной мере зависят от носителя. Наиболее низкие энергии активации получены нри применении (10% Pt)/Si02 [190], наиболее высокие —на (20% Pt)/ [143, 151]. На Pt/ энергии активации гидрогенолиза метил- и этилциклопентанов, а также самого циклопентана довольно близки (155—163 кДж/моль). При использовании в качестве носителей AI2O3, SIO2 и алюмосиликата энергии активации гидрогенолиза различаются сильнее метилциклопентан < этилциклопентан < циклопентан. Предполагают [190], что найденная закономерность связана с заметным проявлением электронодонорных свойств алкильных радикалов под влиянием кислотных свойств оксидных носителей использованных бифункциональных катализаторов. По-видимому, в случае СНз-группы это влияние сказывается сильнее, чем для СаНз-группы, что и приводит к найденным последовательностям энергий активации. Энергии активации гидрогенолиза этих трех углеводородов в присутствии названных катализаторов, а также относительные выходы продуктов гидрогенолиза [c.140]

    Интересные результаты были получены также при исследовании реакции гидрогенолиза моно-, ди- и три-алкилциклопентанов в условиях импульсного режима [157, 158, 194]. Оказалось, что в этом случае происходит заметное увеличение (в 2—3 раза) относительной скорости гидрогенолиза наиболее экранированных связей (а и а ). Это явление, обнаруженное вначале на примере метил- и этилциклопентанов [194], впоследствии было замечено и для других гомологов циклопентана (1,2- и 1,3-диметилциклопентаны, соединения VII и VIII). Относительные выходы продуктов гидрогенолиза (на одну связь), иллюстрирующие обсуждаемый сдвиг селективности при переходе от условий проточного ме тода к импульсному (на Pt/ ), приведены ниже  [c.148]

    На рис. 4.8 показана зависимость выхода продуктов гидрокрекинга и изомеризации н-нонана. В мягких условиях н-нонан изомеризуется без значительного гидрокрекинга, и выход изононанов достигает 60%. Установлено, что селективность изомеризации при одинаковой конверсии постепенно уменьщается от н-нонана к н-гексадекану. Это уменьшение особенно значительно для парафиновых углеводородов С13-С15. Основными продуктами являются монометилпроизводные. При очень высоком (около 90%) уровне конверсии, когда основная часть н-нонана гидрокрекируется, селективность образования диметилзамещенных резко увеличивается. Парафиновые углеводороды с этильными, пропильными и бутильными заместителями в продуктах изомеризации практически отсутствуют. В присутствии катализатора Р1 - Н28М преимущественно образуется 2-метилоктан [134]. [c.119]

    ОТ олефина, но также и от других лигандов комплекса, и были сделаны попытки изменить селективность путем замены части СО другими более крупными лигандами, устойчивыми при условиях гидроформилирования. Этим требованиям, по-видимому, удовлетворяют триалкилфос-фины PRj или фосфиты Р(ОЯ)з и их триарильные гомологи РАГд или Р(ОАг)з [40]. Высокая устойчивость координационных связей Со—РХ3 объясняет как повышенную стабильность этих видоизмененных катализаторов, допускающих более высокие температуры и более низкие давления СО, так и их более низкую активность. Значительное повышение селективности было найдено при гидроформилировании пропилена выход продуктов с открытой цепью удалось увеличить с 78 до 88% [41 ] кроме того, при реакции смесей стерически блокированных и не блокированных олефинов (2-метилбутен-2 и 2-метил бутен-1) реагировал только второй олефин. Есть указания, что сходные лиганды, как, например, арсикы АзЯз или цианиды R N, оказывают одинаковое влияние на гидроформилирование [42]. [c.200]

    Как видно ИЗ данных табл. 69, наиболее селективным катализатором скелетной изомеризации пентенов является т1-окись алюминия, дегидратированная при 370—600 °С селективность процесса при средней температуре изомеризации 374°С составляет 89—96%, причем больший выход изопентенов наблюдается на т]-А120з, дегидратированной при 600 °С. Выход побочных продуктов не превышает 7%. Достаточно селективным катализатором может также быть платинированная окись алюминия выход изопентенов при 400 °С составляет 60%, а выход продуктов крекинга и полимеризации не превышает 9%. Селективность процесса 87%. В присутствии фторированной окиси алюминия выход изопентенов тоже высок (л 60%), но велико количество побочных продуктов. [c.194]

    Влияние условий процесса в основном хорошо согласуется с поженными выше его химическими особенностямя. Повышение давления водорода, облегчая стабилизацию радикалов (реакция Щ должно тормозить реакции конденсации типа J0, 11. Поэтому ц Ги-меняются повышенные давления, но так, чтобы пе уменьшить селективность Повышение температуры увеличивает выход продуктов деметилирования как в каталитических, так и в термических процессах. Однако одновременно растет выход продуктов конденсации и усиливаются отложения кокса на катализаторе. Поэтому для каждого катализатора подбирается оптимальная температура, составляющая для хромового и молибденового катализаторов на активированном угле 535—550 °С, для окисного алюмокоТбальтмояиб-денового катализатора — 580—600 °С, для хромового катализатора без носителя — 600—650 °С. Во многих процессах в сырье вводят водяной пар, что уменьшает образование продуктов конденсации и кокса. Такое действие пара объясняют ассоциацией молекул воды с радикалами, что снижает реакционную способность радикалов, но не в такой мере, чтобы препятствовать реакции 2. [c.333]

    Пример VI-1. Алкилирование изобутана пропиленом. Из работы Одена isi по алкилированию изобутана пропиленом при 5 С может быть взята зависимость между дифференцпальной селективностью ifp и отношением х масс превращенного олефина и введенного изобутана (рпс. V1-5). Требуется рассчитать выход продукта в единичном кубовом реакторе (т1р ) и в каскаде из трех кубовых реакторов (ilpg) при вводе 50% пропилена в первый реактор и по 25% во второй и третий реакторы. Время пребывания велико, так что пропилен практически полностью взаимодействует в каждом реакторе отношение массовой скорости подачи изобутана к общей скорости подачп олефинов должно быть равно 5. [c.205]

Рис. 4.4. Влияние продолжительности использования катализитора, глубины превращении, кратности циркуляции катализатора, селективности бензин /кокс, бензин/ газ в случае гетерогенного процесса, протеказзщего с отравлением катализатора на выход продуктов , X ( ) на скорость их образования в единицу времени т (б) г - газ б - бензин Рис. 4.4. <a href="/info/420722">Влияние продолжительности</a> использования катализитора, <a href="/info/25903">глубины превращении</a>, <a href="/info/66246">кратности циркуляции катализатора</a>, селективности бензин /кокс, бензин/ газ в случае <a href="/info/12711">гетерогенного процесса</a>, протеказзщего с <a href="/info/3365">отравлением катализатора</a> на <a href="/info/9156">выход продуктов</a> , X ( ) на скорость их образования в единицу времени т (б) г - газ б - бензин
    Энергия активации изомеризации, по имеющимся данным, составляет около 84 кДж/моль (20 ккал/моль) по-видимому, процесс протекает во внутридиффузионной области. Повышение температуры снижает равновесный выход изопарафинов и вынуждает увеличивать рециркуляцию непревращенньго н-парафина. Одновременно несколько увеличивается выход продуктов гидрокрекинга. Однако, пока глубина превращения исходного н-парафина не достигает равновесной, селективность изомеризации обычно очень высока — 0,95 и выше. [c.239]

    В присутствии цеолитсодержащих катализаторов характер зависимости выхода продуктов от глубины крекинга не меняется (рис. 51). Эти катализаторы отличаются от аморфных лишь по абсолютной величине образующихся продуктов крекинга [69]. Отличительной особенностью цеолитсодержащих катализаторов является их способность обеспечивать значительную глубину крекинга, высокое бензинооб-разование. Так, если аморфные катализаторы позволяют получать максимальный выход бензина 37 объемн. % при оптимальной конверсии примерно 50%, то цеолитсодержащие катализаторы образуют до 60 объемн. % бензина при глубине конверсии 70— 80 вес. %. Таким образом, другой особенностью последних является очень высокая селективность даже при больших степенях превращения. В связи с этим при одинаковой глубине крекинга в присутствии цеолитсодержащих катализаторов образуется значительно меньше газа и кокса, чем при применении аморфных алюмосиликатов. [c.116]

    Карбонилы родня значительно (в 10 —10 раз) превосходят по каталитической активности в реакции гидроформилирования карбонилы кобальта. На родиевых комплексах достигнуты предельные показатели как по селективности, так и по выходу продуктов нормального строения. Наиболее эффективны соединения типа HRh( O) (РКз)з, где R = Ph, PhO, AlkO. Использование родиевых комплексов позволяет осуществлять гидроформилированне олефинов в более мягких условиях (60—120 С, 1—3 МПа). [c.256]

    Производство масел. Современная схема производства масел из восточных парафинистых нефтей включает очистку с применением избирательных растворителей (деасфальтизацик гудрона, селективную очистку деасфальтизата и вакуумных дистиллятных фракций, депарафинизацию рафинатов селективной очистки) и гидрогенизационную или контактную доочистку депара-финированных масел. Для проектирования установок очистки с применением избирательных растворителей необходимы следующие данные выход продуктов в расчете на сырье, состав растворителя, температура и давление процесса, соотношение между растворителем и сырьем на различных ступенях извлечения и т. д. Эти данные выдаются ВНИИНП, а по отдельным процессам— ГрозНИИ и Институтом нефтехимического синтеза АН Азербайджанской ССР. [c.42]

    Реакции окисления—типичные высокоэкзотермические реакции — могут привести к выходу либо очень стабильных продуктов (например, превращение аммиака в азот и воду), либо промежуточных продуктов — селективное окисление (например, превращение аммиака в окислы азота, метана в формальдегид и пропилена в акролеин). [c.14]


Смотреть страницы где упоминается термин Выход продукта и селективность: [c.138]    [c.132]    [c.102]    [c.170]    [c.173]    [c.385]    [c.409]    [c.163]    [c.193]    [c.38]    [c.163]    [c.35]   
Смотреть главы в:

Сборник задач и упражнений по химической технологии и биотехнологии -> Выход продукта и селективность




ПОИСК





Смотрите так же термины и статьи:

Выход продукта

Расчет состава продуктов реакции, конверсии, выхода и селективности

Соотношения между выходом целевого продукта, селективностью и степенью превращения для различных моделей реакторов

Степень конверсии сырья, выход целевого продукта и селективность процесса



© 2025 chem21.info Реклама на сайте