Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Хроматография газовая адсорбционная линейная

    Существенным отличием распределительной газовой хроматографии от адсорбционной является то, что изотерма абсорбции линейна в более широком интервале концентраций, чем изотерма адсорбции. [c.171]

    Газовая адсорбционная хроматография. Большое распространение ГЖХ по сравнению с газовой адсорбционной хроматографией обусловлено широким выбором различных по селективности неподвижных жидкостей, создающим большие возможности для анализа разнообразных смесей. Кроме того, благодаря однородности жидкостей изотермы растворимости практически линейны и пики анализируемых соединений, как правило, симметричны. Выбор же адсорбентов ограничен и они неоднородны, что приводит к нелинейности изотерм адсорбции, размыванию и несимметричности пиков, ухудшению.разделения.. [c.129]


    Существующие теории газовой хроматографии удовлетворительно решают только так называемую линейную равновесную хроматографию [1—5] (линейная изотерма, наличие адсорбционного равновесия в любой момент времени) и некоторые наиболее простые типы линейной неравновесной хроматографии [6—12], когда имеет место медленное установление равновесия (ограниченная скорость перехода или адсорбции, медленная диффузия внутрь зерна адсорбента). [c.444]

    Появление жидкой пленки привело к изменению природы физико-химических процессов в хроматографической колонке. Вместо процесса адсорбции газа на твердом адсорбенте в колонке стал происходить процесс растворения газа в тонкой пленке, находящейся на твердом носителе. Эффективность разделения стала определяться не процессами адсорбции-десорбции газа, как это было в адсорбционной газовой хроматографии, а процессами растворения газа в жидкой пленке и его выделения. Различие в растворимости газов оказалось более существенным, чем различие в их адсорбционных свойствах, поэтому газо-жидкостная хроматография открыла более широкие возможности в разделении и анализе многокомпонентных смесей. Очень важным преимуществом газо-жидкостной хроматографии является возможность работы в области линейной изотермы в более широкой области концентраций, чем в газовой адсорбционной хроматографии, что обеспечивает получение практически симметричных хроматографических пиков. [c.328]

    В жидкостно-распределительной и жидкостно-адсорбционной хроматографии объемная и линейная скорости потока не меняются по длине колонки, поскольку подвижная фаза практически несжимаема. Газы же легко сжимаемы, и этот важный факт необходимо учитывать при вычислении удерживаемых объемов или при-выборе условий работы. Для течения газа давление на входе в распределительную колонку в газовом хроматографе должно [c.99]

    Нелинейная идеальная хроматография и перспективы линейной газовой адсорбционной хроматографии. [c.42]

    Изотермы адсорбции и линейная газовая адсорбционная хроматография. [c.156]

    Лабораторный газовый хроматограф Цвет-2-65 предназначен для анализа сложных органических смесей. Для регистрации результатов анализа в этом хроматографе используется высокочувствительный пламенно-ионизационный детектор, работающий в дифференциальном режиме. Принцип работы хроматографа основан на использовании метода газо-адсорбционной и газо-жидкостной хроматографии. В нем используются набивные аналитические колонки длиной 100—300 см, внутренний диаме.р 0,4 см. Хроматограф может работать как в изотермическом режиме, так и в режиме линейного программирования температуры колонок. Испаритель обеспечивает быстрое и полное испарение жидкой смеси, так как в нем устанавливается температура, равная или выше температуры кипении наиболее высококипящего компонента пробы. Максимальная температура испарителя достигает 450°С при любой температуре термостата. [c.243]


    Одним из преимуществ газо-жидкостной хроматографии является то, что коэффициент Генри значительно больше изменяется при переходе от одного вещества к другому, чем в газо-адсорбционной, что обеспечивает лучшее разделение сложных смесей. Это обусловлено тем, что газ-носитель не растворяется в неподвижной фазе и не адсорбируется носителем. Коэффициент Генри для газа-носителя равняется нулю, поэтому, исходя из основного уравнения теории равновесной газовой хроматографии (см. стр. 45), линейная скорость перемещения газа-носителя (ио) будет равна  [c.49]

    При больших скоростях (1—2 мл сек) на форме кривой проскока отражается влияние кинетики процесса переноса адсорбата. Это позволяет проанализировать возможности применения линейного кинетического уравнения Глюкауфа. На основании теоретического анализа этих кинетических кривых проскока мы пришли к выводу, что упомянутое кинетическое уравнение правильно описывает кинетику адсорбции лишь вблизи адсорбционного равновесия, так как только в этой области имеется соответствие с предпосылками, положенными в основу этого, часто употребляемого в газовой хроматографии уравнения. [c.458]

    Классические методы исследования полимеров — светорассеяние, седиментация, осмометрия, вискозиметрия и другие сталкиваются с существенными трудностями при анализе разветвленных и неоднородных по составу полимеров. Еще более сложен, а зачастую и невозможен анализ этими методами смесей таких полимеров с линейными полимерами. Подобные смеси часто возникают при синтезе сложных полимерных систем — блоксополимеров, привитых сополимеров и разветвленных гомополимеров, когда наряду с основным продуктом получаются соответствующие линейные гомополимеры. Сочетание ГПХ с классическими методами анализа полимеров и с другими хроматографическими методами (адсорбционной и пиролитической газовой хроматографиями) позволяет проводить анализ и таких сложных систем. При этом адсорбционную хроматографию можно с успехом использовать в тонкослойном варианте (ТСХ), что позволяет осуществлять качественный и количественный анализ структурной и химической неоднородности фракций, полученных микропрепаративным ГПХ-фракционированием. С помощью пиролитической газовой хроматографии (ПГХ) можно находить брутто-состав полимеров, а классические методы дают сведения о таких средних макромолекулярных характеристиках, как характеристическая вязкость, среднемассовая и среднечисленная молекулярные массы. [c.230]

    Варианты газовой хроматографии — газо-жидкостная и газо-адсорбционная— имеют свои преимущества и недостатки, поэтому выбор наиболее эффективного способа анализа в каждом случае определяется характером конкретной задачи. Так, в начальный период развития газовой хроматографии анализировали только газы и легколетучие жидкости на колонках с сильными адсорбентами. Переход к газо-жидкостной хроматографии способствовал уменьщению коэффициента распределения Г для более тяжелых сорбатов, в результате чего появилась возможность анализировать их хроматографическим методом. Использование неподвижных жидкостей самой разнообразной химической природы сделало газожидкостную хроматографию универсальным методом, позволяющим осуществлять разделение на основе различных видов физико-химических взаимодействий между сорбатами и растворителями. Кроме того, линейность изотерм растворения обеспечивала получение практически симметричных пиков сорбатов (при правильном подборе условий процесса). Однако существенные ограничения, связанные с летучестью неподвижных жидкостей, не позволяли проводить высокотемпературные процессы разделения высококипящих веществ ни в аналитическом, ни в препаративном вариантах. Поэтому дальнейшее развитие газо-адсорбционной хроматографии с применением однороднопористых адсорбентов различной химической природы было необходимо для обеспечения дальнейших успехов газовой хроматографии как метода анализа и исследования высококипящих соединений. [c.33]

    В газовой хроматографии, особенно при ее применении для автоматического контроля состава смесей и регулирования химических процессов, дополнительно предъявляются все более повышенные требования к скорости анализа [11], время которого часто не должно превышать 0,5—5 мин. В этом отношении метод газо-жидкостной хроматографии не имеет преимуществ по сравнению с методом газо-адсорбционной хроматографии. Действительно, разделительная способность неподвижных фаз (растворителей или адсорбентов) определяется их селективностью, т. е. природой, величиной поверхности и скоростью массообмена (кинетикой растворения и испарения компонентов или их адсорбции и десорбции). Наилучшее разделение при прочих равных условиях, и если изотермы распределения (растворимости или адсорбции) в области рабочих концентраций линейны, произойдет в том случае, когда коэффициент массообмена достаточно велик. При значительных скоростях газа-носителя главную роль в размывании полосы в газожидкостной хроматографии играет кинетика массообмена, определяемая в основном медленностью прохождения молекул компонентов через поверхность раздела газ — жидкость [21, 22] и медленностью их диффузии внутри жидкой пленки [23]. В газо-адсорб- [c.8]


    Петровой, Храповой и Щербаковой [20] из газохроматографических данных были определены теплоты адсорбции низших углеводородов от С до С4 на цеолите СаА. Сравнение теплот адсорбции, полученных из газохроматографических данных, с величинами, определенными прямыми калориметрическими измерениями и рассчитанными из изостер по статическим адсорбционным данным, показывает, что метод газовой хроматографии может быть использован для быстрой оценки теплот адсорбции несильно адсорбирующихся газов цеолитами и для исследования их зависимости от строения поверхности адсорбента и молекул адсорбата. Теплоты адсорбции цеолитом нормальных алканов и нормальных алкенов линейно возрастают с увеличением числа атомов углерода в молекуле. При переходе от насыщенных к [c.127]

    В последнее время была развита теория газо-адсорбцион-нои хроматографии, в которой одновременно учитываются продольная диффузия в газовой фазе, радиальная диффузия внутрь поры частицы, конечная скорость массопередачи через границу раздела, а также адсорбция на внутренней поверхности поры зерна [14—17]. Эти работы основаны на применении метода моментов, который часто используется в математической статистике. В случае линейной изотермы ад- [c.137]

    Пористые полимеры. Пористые полимеры уже получили достаточно широкое распространение в газовой хроматографии, несмотря на то, что первые работы по применению их в этой области появились лишь в 1966 г. - 36. Из-за слабой специфичности адсорбционных свойств многих пористых полимеров их используют для разделения разнообразных водных смесей, смесей различных полярных веществ, многих агрессивных веществ и дейтерозамещенных соединений Пористые полимеры без привитых полярных функциональных групп (например, хромосорб-102, на поверхность пор которого выходят фенильные группы) представляют собой слабо специфические адсорбенты П1-Г0 типа Вследствие этого молекулы, принадлежащие к группе Д, удерживаются на них сильнее чем молекулы, принадлежащие к группам Л и В. При этом молекулы, у которых относящееся к группе В звено находится в линейной цепи (простые эфиры), не обнаруживают специфичности адсорбции на сополимерах стирола с дивинилбензолом, а те молекулы, у которых звено группы В находится на ответвлениях цепи (кетоны) или на конце цепи (нитрилы), проявляют определенную специфичность адсорбционного взаимодействия с такими пористыми полимерами. [c.27]

    Тип размывания, соответствующий изотерме, резко ухудшает разделение. Поэтому адсорбционная газовая хроматография применяется в ограниченном числе случаев. Активные угли применяются в основном для разделения постоянных газов. Разработан ряд адсорбентов (карбохро-мы на основе порошков графитов, пористые полимеры и др.), не содержащих тонкие микропоры и характеризующихся линейными изотермами. [c.406]

    Влияние неидеальиости жидкого раствора было рассмотрено Портером, Дилом и Строссом Если коэффициент активности растворенного вещества зависит от концентрации (как это в общем случае можно ожидать для всех неидеальных растворов), то имеет место нелинейная зависимость концентрации вещества в жидкой фазе от его концентрации в газовой фазе. Такие явления аналогичны нелинейной изотерме в адсорбционной хроматографии (см. раздел 25-5) и приводят к асимметрии элюентных полос. Направление асимметрии зависит от знака отклонения от линейности. Оба типа асимметрии (растянутый фронт или растянутая хвостовая часть) действительно наблюдаются на прак- [c.547]

    К сожалению, газо-адсорбциопная хроматография не нашла достаточно широкого применения как из-за недостаточной линейности изотерм адсорбции ряда определяемых веществ, так и из-за чрезмерно высоких потенциалов адсорбции высококипящих компонентов, многие из которых при тепловой регенерации подвергаются необратимым изменениям на поверхности сорбента (полимеризации, осмолению и т. п.), приводящим к сильному изменению свойств последнего. Высокое адсорбционное сродство к воде полярных сорбентов также является существенным недостатком, порождающим невоспроизводимость результатов при повторных определениях. Преимуществами газо-адсорбционной хроматографии являются возможность разделения низкокипящих газов (при больших удельных поверхностях сорбентов и близких к линейным изотермах), высокие коэффициенты селективности К ) и возможность работы при высоких температурах. Кроме того, меняя природу сорбента и температурный режим его работы, можно обеспечить не только высокие К , но и широкий диапазон компонентов, определяемых в одном опыте. Из сказанного следует, что одной из центральных задач газовой хроматографии является подбор и разработка сорбентов с оптимальными поверхностными свойствами и пористой структурой. [c.69]

    Размывание полос, вызванное криволинейностью изотермы, имеет большое значение и ограничивает применение адсорбционной хроматографии [39, 46, 52, 58, 71, 77, 84—86]. По мере развития хроматографии определились следующие основные пути устранения размывания этого типа. Прежде всего переход от адсорбции компонентов к распределению их между газовой и ншдкой фазами означает значительное расширение области. линейной изотермы. Это объясняется тем, что, как правило, для растворов область выполнения закона Генри значительно шире, чем для адсорбентов. [c.17]

    Зизин и Иванова [155] использовали метод линейной жидкостно-адсорбционной хроматографии для определения группового химического состава нефтяных фракций. В качестве сорбента использовщхи оксид алюминия, емкость линейного участка изотермы сорбции которого была увеличена предварительной сорбцией на его поверхности воды. Элюентом служил изооктан, а детектором - интерферометр ИТР-2, одна из кювет которого была сделана, проточной. Эта система позволяла разделять нефтепродукты на насыщенные, моно- и бициклические ароматические углеводороды. Подобный метод [156] использовали и для определения группового состава продуктов газового конденсата с т. кип. 70-210 °С. Разделение проводили на модифицированной водой Al Oj с детектором по диэлектрической проницаемости. В качестве подвижной фазы использовали -гексан. [c.111]

    Газохроматографический метод анализа начал быстро развиваться с 952 года, когда Джемс и Мартин [1] предложили газожидкостный вариант хроматографии. С тех пор в аналитической практике в основном применяют этот метод. Преимущества газожидкостного метода Ттеред газо-адсорбционным объясняются, во-первых, возможностью широкого выбора различных по химическому строению неподвижных жидкостей, пригодных для разных практических задач, и, во-вторых, высокой чистотой и однородностью жидкостей, благодаря чему в широкой области рабочих концентраций, начиная от самых низких, изотермы растворимости практически линейны. Выбор же твердых пористых тел с поверхностями различного химического состава среди выпускаемых промышленностью адсорбентов ограничен, и эти адсорбенты геометрически и химически неоднородны. Однако с расширением применения и развитием техники газохроматографического анализа, в частности с повышением чувствительности детекторов, расширением интервала температур работы хроматографов и с ростом применения газовой хроматографии для автоматического контроля состава смесей в промышленности и для анализа микропримесей, выявились некоторые существенные недостатки газо-жидкостной хроматографии. Это прежде всего летучесть и нестабильность жидких фаз, затрудняющие анализ микропримесей, а также анализ при высоких температурах и с программированием температуры в препаративной хроматографии эти недостатки способствуют загрязнению выделенных веществ [2]. [c.84]

    Кремер и Розелиус [526] указали, что в определенных условиях с помощью газовой хроматографии можно получать сведения о величине поверхности, размере частиц и пористости твердых катализаторов. Допустим, что 0 — время прохождения газа-носителя через хроматографическую колонку, а — время, за которое исследуемый газ проходит через колонку с газом-носителем. Время удерживания = I — to характеризует адсорбционную способность твердого катализатора, содержащегося в хроматографической колонке. Далее, если сравнивать два катализатора 1 и 2 и допустить, что а) концентрация исследуемого вещества столь мала, что не происходит эффективного блокирования адсорбирующей новерхности (т. е. допустить, что выполняется закон, характеризующий линейную часть изотермы адсорбции) б) имеются различия только в адсорбционной способности центров адсорбции, а не в их числе в) удерживание исследуемого вещества в колонке происходит только благодаря адсорбции, то тогда, согласно Крамеру, теплоты десорбции с этих двух катализаторов и ( 2 связаны с соответствующими временами удерживания и Д 2 следующим соотно- [c.147]

    Жидкостная адсорбционная хроматография основана на теории адсорбции из раствора. Адсорбционное равновесие между раствором и адсорбентом подчиняется уравнению изотермы адсорбции Лэнгмюра (17.1), в области разбавленных растворов изотерма линейна (17.2). Селективность адсорбции зависит от природы сил взаимодействия между адсорбирующимся веще-ство 1 и адсорбентом. Эффективность хроматографической колонки зависит, главным образом, от процессов диффузии и мас-сопередачи в обеих фазах и определяется, как и в газовой хроматографии, высотой эквивалентной теоретической тарелки (ВЭТТ) Я. С линейной скоростью подвижной фазы и и некоторыми другими величинами ВЭТТ связана уравнением [c.339]

    Хроматографический метод был создан Цветом в 1903 г. как адсорбционный [2]. Некоторые вопросы, близкие фронтальной газо-адсорбционной хроматографии, рассматривались независимо от задач газовой хроматографии в работах по динамике сорбции в противогазах еще в двадцатые годы, например в работе Шилова, Ленинь и Вознесенского [3] (см. также монографии [4] и [5]). Однако газо-хроматографический метод анализа сложных смесей начал быстро развиваться только с 1952 г., когда Джемс и Мартин [6] предложили проявительный газожидкостный вариант хроматографии. С тех пор в аналитической практике в основном применяется этот метод. Преимущества газожидкостного метода перед газо-адсорбционным связаны, во-первых, с возможностью большого выбора различных по химическому строению и молекулярному весу неподвижных жидкостей, пригодных для разных практических задач, и, во-вторых, с однородностью жидкостей, благодаря чему в широкой области рабочих концентраций, начиная от самых низких, изотермы растворимости практически линейны. Выбор же твердых дисперсных тел с поверхностями различного химического состава среди выпускаемых промышленностью адсорбентов весьма ограничен, и эти адсорбенты геометрически и химически очень неоднородны. [c.7]

    Газо-адсорбционный метод этих недостатков не имеет. Основным его недостатком является лишь нелинейность изотерм адсорбции, приводящая к несимметричности пиков. Эта нелинейность связана с геометрической и химической неоднородностью поверхности обычных активных адсорбентов. Особенно резко она проявляется в случае сильно адсорбирующихся молекул. Неоднородность и высокая адсорбционная, а иногда и каталитическая активность обычных адсорбентов ограничивает их применение в газовой хроматографии. Поэтому такие адсорбенты применяются в основном лишь для анализа газообразных веществ, не содержащих активных функциональных групп, изотермы адсорбции которых при используемых в хроматографии концентрациях и температурах близки к линейным. После появления ряда работ 1947—1954 гг., в частности работ Классопа [14], Филлипса [15], Туркельтауба [16], Кремер [17], Янака [18] и Рэя [19], газо-адсорбционный метод хроматографии до начала 60-х годов рассматривался лишь как метод, дополняющий газо-жидкостную хроматографию для разделения газов и паров низкокипящих веществ, так как в этом случае разделительная способность жидких фаз благодаря малой растворимости газов недостаточна [20]. [c.8]

    После того, как к и К определены, можно вычислить по формуле (47) скорость адсорбции Н. Величина К не является константой адсорбционного равновесия в обычном смысле этого слова она равна отношению П11с1 в данной точке на нелинейной изотерме адсорбции. Опыты при различных концентрациях и температурах дают различные значения к и К. Опыты проводили на установке, представляющей собой обычный газовый хроматограф, в котором вместо хроматографической колонки была помещена медная трубка диаметром 6 мм, заполненная кобальтовым катализатором. Объем пробы дейтерия 1 см . Для экспериментов использовали колонки длиной 40, 30 и 20 см. Средний размер частиц равнялся 0,229 0,185 и 0,105 мм. Линейные скорости потока изменяли от 2 до 22 см/сек. Диапазон изменения температуры составлял от —34° до -1-23,5° С. [c.152]


Смотреть страницы где упоминается термин Хроматография газовая адсорбционная линейная: [c.30]    [c.30]    [c.5]    [c.381]    [c.154]    [c.381]   
Газовая хроматография - Библиографический указатель отечественной и зарубежной литературы (1961-1966) Ч 1 (1969) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Адсорбционная хроматографи

Газовая хроматография адсорбционная

Газовая хроматография хроматографы

Хроматограф газовый

Хроматография адсорбционная

Хроматография газовая

Хроматография линейная



© 2024 chem21.info Реклама на сайте