Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Нефть циклические углеводороды из нее

    Углеводороды являются важнейшей составной частью любой нефти. И хотя содержание их в различных нефтях далеко не одинаково от 30—40 до 100% (в газовых конденсатах), все же в среднем до 70 мас.% всех нефтей составляют углеводороды. История развития такой научной дисциплины, как химия нефти,— это фактически история развития химии углеводородов. Начало исследований по химии нефти было положено известным немецким химиком К. Шор-леммером, обнаружившим в нефтях Пенсильвании (США) и-бутан, к-пентан и к-гексан. Успех работы во многом был связан с тем, что ранее Шорлеммер выполнял работы по синтезу нормальных алканов в лаборатории своего учителя А. Вюрца. Спустя 20—25 лет русский химик В. В. Марковников, исследуя отечественные (бакинские) нефти, пришел к выводу о том, что основными углеводородами в этих нефтях являются уже не алифатические, а циклические — насыщенные углеводороды ряда циклоиентана и циклогексана, названные им нафтенами. И здесь Марковникову помогли его более ранние работы по синтезу и исследованию свойств циклоалканов, выполненные в лаборатории А. М. Бутлерова. Таким образом, еще в конце прошлого столетия были заложены методологические осно вы химии нефти, т. е. синтез модельных углеводородов с последующим нахождением их в нефтях. Тогда же были сформулированы и первые представления о химической классификации нефтей, предполагающей деление нефтей на два основных класса парафиновый и нафтеновый. [c.7]


    Насыщенные циклические углеводороды (нафтены) являются наиболее интересной и наиболее трудно исследуемой частью любой нефти. Собственно говоря, эти углеводороды и определяют особое место нефтей как в ряду природных органических соединений, так и среди каустобиолитов. [c.77]

    Действующим ОСТ 39 112-80 не предусмотрено вьщелять в составе нефти циклические углеводороды, а углеводороды с молярной массой более пентана объединяются в УК гексаны и УК гептаны. [c.29]

    При постоянном технологическом режиме крекинга и не слишком высоких температурах свойства и характер получаемого бензина будут зависеть от характера крекируемого сырья. Это следует из того обстоятельства, что термический крекинг представляет собой процесс, при котором углеводородные осколки, вначале содержавшиеся в больших молекулах, расщепляются с небольшими изменениями структуры или вообще без таковых. Так, при крекинге твердого парафина в обычных температурных условиях можно было бы ожидать образования парафинов и олефинов, имеющих в основном прямую цепочку углеродных атомов опыт подтвердил это предположение. Аналогичным образом, при крекинге газойля из нефтей Галф-Коста или Калифорнии, содержащих большое количество циклических углеводородов, получают бензины, имеющие преимущественно нафтеновый или ароматический характер. Если же, впрочем, температура процесса очень высока, — например 700° С или выше, — то главными продуктами, независимо от характера сырья, будут ароматика и газообразные парафины и олефины. [c.307]

    Работ по природе аморфных парафинов (церезинов) в нефти имеется очень мало [20—25]. Скорей всего этот продукт, полученный из высококипящих и остаточных масел, состоит в значительной степени из нормальных и изопарафинов, пластифицированных твердыми или полужидкими циклическими углеводородами или соединениями с циклическими ядрами. Последние имеют углеводородные цепи, близкие по составу с большинством жидких углеводородов в смазочных маслах [26]. Относительные количества различных типов соединений меняются для разных нефтей, окончательного ответа мы не получим, пока исследователь не сможет проанализировать все 100% взятого вещества. [c.515]

    В последние годы значительные успехи в области исследования строения углеводородов были получены при помощи ряда физических методов исследования. Особенно большую роль сыграли такие методы, как ядерно-магнитный резонанс, молекулярная и масс-спектрометрия, газовая хроматография и термическая диффузия. Однако, кроме физических методов исследования, не меньшее значение имеют и химические методы, прогресс которых в последнее время, может быть, был и не столь внешне блестящ, но все же весьма существен. Бесполезно, на наш взгляд, определять преимущества тех или иных методов исследования, так как только разумное их совместное использование может привести к успеху, особенно в анализе столь сложных, многокомпонентных смесей, какими являются насыщенные циклические углеводороды нефти. Характерно, что в одной из последних больших монографий, посвященных установлению структуры органических соединений, уделяется одинаковое внимание как физическим, так и химическим методам исследования [Ц. [c.312]


    Нефть Смесь цепных и циклических углеводородов в сырой нефти содержание углерода 80-87%, содержание водорода 9-14% Ь Сырье для получения моторных топлив, смазочных масел, парафинов, нефтяного кокса, а также основное сырье нефтехимических производств [c.244]

    Сходными по свойствам и по технологии производства с нефтя- ными парафинами являются воски, или мягкие парафины — кон-i центраты твердых, но пластичных при комнатной температуре кристаллических углеводородов, которые характеризуются повышенным содержанием изомерных и циклических углеводородов. [c.11]

    Современные методы исследования строения насыщенных углеводородов являются настолько большой проблемой, что могли стать предметом специальной монографии. Поэтому понятно, что в небольшой по объему главе автор смог лишь схематично обрисовать пределы применения и научные задачи, решаемые при помощи тех или иных методов. Более подробно рассмотрены некоторые новые, оригинальные методы исследования строения углеводородов, основанные на использовании различных хими- ческих реакций. Собственно говоря, настоящая глава является как бы расширенным введением к последующей главе, посвященной исследованию строения циклических углеводородов нефтя-лого происхождения. Однако без предварительного освещения тех методов, которые были положены в основу исследования нефтяных углеводородов, изложение содержащегося там фактического материала представляется нам невозможным. [c.312]

    На рис. 92 приведен пример исследования методом термической деструкции особенностей строения высококинящих нефтяных циклических углеводородов. В качестве исходной смеси была взята фракция нафтенов (не содержащая углеводородов алифатического ряда) состава jq—С25, выделенная из нефти месторождения Грязевая Сопка (Баку). Сравнивая хроматограммы исходных углеводородов (а) и продуктов распада (б), нетрудно сделать заключение о наличии в исследуемых нафтенах длинных неразветвленных алифатических цепей. [c.329]

    В задачу автора не входит рассмотрение основ газовой хроматографии, так как соответствующий материал достаточно хорошо освещен в отечественной литературе [22, 32, 501. Нам хотелось бы здесь коротко проанализировать те задачи, которые в настоящее время могут быть решены газохроматографическим анализом такой сложной смеси соединений, какой являются циклические углеводороды нефтей. (В предыдущих главах уже были приведены некоторые примеры использования газовой хроматографии при исследовании термодинамических и кинетических параметров реакционной способности углеводородов.) [c.336]

    СОСТАВ И СТРОЕНИЕ НАСЫЩЕННЫХ ЦИКЛИЧЕСКИХ УГЛЕВОДОРОДОВ НЕФТЕЙ [c.343]

    Насыщенные циклические углеводороды (нафтены) являются наиболее интересной в химическом отношении частью любой нефти. Собственно говоря, эти углеводороды и определяют особое место нефтей как в ряду природных органических соединений, так и среди каустобиолитов. Нафтены составляют основную массу углеводородов нефтей, концентрации их колеблются в пределах 40—70%. [c.343]

    Как это видно по данным, приведенным в табл. 90, рассмотренные нефти различны по содержанию легких компонентов и по своему групповому составу. Однако закономерности в распределении циклических углеводородов (среди изомеров) во всех нефтях достаточно близкие. В табл. 86—89 представлены данные о соотношении нафтенов лишь в нескольких типичных нефтях. В настоящее время имеются сведения о распределении нафтенов 7—С9 в десятках нефтей различных месторождений как Советского Союза, так и зарубежных. Во всех нефтях распределение циклических углеводородов примерно такое же. Поэтому распространенное мнение о различии химического состава нефтей относится скорее к соотношению суммы углеводородов различных рядов, но не к соотношению изомеров. Правда, в нефтях имеются и различия в концентрациях изомеров, но это относится скорее к углеводородам метанового ряда, где концентрация нормальных алканов (на сумму изомеров) действительно меняется в широких пределах и может служить хорошим классификационным признаком нефтей [2]. [c.349]

    Следует также учесть, что нефть медленно, но беспрерывно меняет свой состав. Поэтому изменение в концентрации легких углеводородов может происходить не только за счет процессов изомеризации, приводящих систему к равновесию, но и за счет процессов деструкции тяжелых углеводородов, пополняющих состав легких углеводородов лишь определенными соединениями. Химизм этих сложных процессов генезиса и метаморфизма (т. е. возникновения и дальнейшего изменения) нефтей в природных условиях требует специального рассмотрения, так как он связан не только с реакциями циклических углеводородов, но и с реакциями углеводородов с открытой цепью. Поскольку различные углеводороды с различными скоростями будут подходить к состоянию равновесия, то, очевидно, ближе всего в нефтях к состоянию равновесия подошли структуры, наиболее быстро изомеризую-щиеся, т. е. структуры, имеющие одинаковое число третичных атомов углерода в молекуле или одинаковое число заместителей в цикле (см. главу 4). [c.350]


    Состав легкокипящих циклических углеводородов, полученных при термокаталитических превращениях олеиновой кислоты, приведен в табл. 101 и 102 и рис. 103 [53]. Сходство между углеводородами нефтей и углеводородами, полученными из кислот, очевидно. [c.372]

    Кроме того, большие количества парафиновых углеводородов содержатся лишь в нефтях определенного происхон<дения. Но даже и в этом случае, кроме парафиновых углеводородов, во фракциях этих нефтей имеется большое число равнокипящих циклических углеводородов — нафтеновых и ароматических. [c.20]

    В 1880 г. Бельштейн и Курбатов [121] впервые обнаружили, что ири нагревании фракций кавказской нефти или гептана с азотной кислотой или со смесью азотной и серной кислот можно получить в небольших количествах нитроуглеводороды. Эти авторы получили преимущественно нитросоединения циклических углеводородов, так как нафтены нитруются легче, чем парафины, имеющие открытые цепи. Таким путем была освобождена от нафтенов фракция 95— 100° американской нефти. Факт частичного нитрования также и парафинов показывает, что при обработке гептана азотной кислотой получают небольшие количества ннтрогептана. [c.300]

    Основной реакцией, протекающей при термолизе нефтей, является деструкция алканов и длинных алифатических цепей (нормальных и изопреноидных) цикланов и аренов, всегда приводящая к образованию более легких алканов. Наличие в нефтях таких углеводородов было отмечено в предыдущих главах. Кроме того, многочисленные данные но ИК-спектрам также указывают на наличие в циклических углеводородах длинных нормальных и изонреноидных алифатических цепей [9]. [c.228]

    По мере повышения температуры кипения и молекулярного веса масляной фракции все большая доля углеводородов даже при меньшей симметричности и простоте структуры приобретает способность кристаллизоваться при повышенных температурах и переходит, таким образом, в категорию твердых углеводородов. Поэтому относительное содержание к-алканов в составе твердых углеводородов с повышением их температуры кипения снижается в результате увеличения содержания твердых циклических углеводородов и, возможно, изоалканов. Здесь нужно отметить, что и общее содержание к-алканов во всей массе данной фракции с повышением ее температуры кипения обычно также снижается. Это обусловливается тем, что с возрастанием молекулярного веса относительная численность к-алканов среди других возможных изомеров с равным числом атомов углерода резко уменьшается. Поэтому для большинства нефтей содержание м-алканов во фракциях светлых продуктов значительно больше, чем в масляных фракциях, а в остаточных продуктах меньше, чем в дистиллятных масляных фракциях. Вместе с этим в тяжелых остаточных продуктах вероятность существования твердых циклических углеводородов и твердых алканов изостроения возрастает настолько, что эти углеводороды могут оказаться уже главным компонентом твердых углеводородов, которые входят в состав этих продуктов. [c.57]

    Наиболее важные из полученных результатов касаются числа ароматических и циклопарафиновых колец в молекулах смазочных масел и соединения ароматичесхсих и циклопарафиновых 1 олец в одной молекуле. В исследованном масляном сырье из нефти Понка число колец изменялось от 1 до 4. Ароматические кольца, связанные с циклопарафиновыми углеводородами, образуют нафтеново-ароматические углеводороды. Предположение, что циклические углеводороды представляют собой смеси в соответствующих пропорциях ароматических и циклопарафиновых углеводородов, исключается. Такие смеси легко разделяются фракционировкой и обработкой растворителями, так как ароматические и циклопарафиновые углеводороды в однородных фракциях имеют различные температуры кипения и разную растворимость. [c.31]

    Парафины иного происхождения (например, из углей или получаемые в различных процессах по реакции Фишера — Тропша) могут содержать 15—20% углеводородов изостроения, а неочищенные парафинистые фракции (гач, петролатум) с пониженной точкой плавления — также циклические углеводороды. Состав жидких фракций (керосин, газойль) зависит от природы исходной нефти и процессов ее переработки. Содержание масла в твердых парафинах — важный критерий выбора сырья для окисления. [c.148]

    Моноциклические углеводороды, входящие в состав реактивных топлив, как правило, представляют собой пяти- и шестичленные кольца с боковы.ми алкановыми заместителями [134]. В керосиновых фракциях нефтей США выделен и идентифицирован семичленный циклический углеводород — метилцик-логептан [124]. Преобладают метилзамещенные циклогексановые углеводороды. В исследованиях последних лет [132, 133, 142, 143] показано, что кроме метильных заместителей у кольца может быть по одному заместителю в виде длинной алкановой цепи с числом углеродных атомов больше шести. Возможно незначительное содержание этильных и пропильных заместителей. [c.76]

    Растворимость всех комшонеитов масляных фракций в полярных растворителях уменьшается с понижением темтературы. Так, растворимость углеводородов и смол в полярных растворителях в широком интервале темшератур показана [6] на примере разных групп кампонентов, выделенных из концентрата сураханской отборной нефти (рис. 7). Парафиновые углеводороды масел при низких температурах и соответствующей кратности растворителя почти, полностью выделяются из раствора. Их растворимость в полярных растворителях так же как и части циклических углеводородов с длинными боковыми цепями является результатом действия дисперсионных сил. Растворимость остальных циклических углеводородов и смол определяется индукционным, а смол— ориентационным взаимодействием. Действие полярных сил в этом случае настолько велико, что даже пр,и низких температурах вследствие аосоциации молекул растворителя не происходит вы- [c.50]

    Большое значение с точки зрения качественных и технико-экономических показателей цроцеаса оелектив ной очистки имеет фракционный состав сырья. С повышением пределов выкипания фракций одной и той же нефти растет число колец в молекулах циклических углеводородов при одновременном увеличении числа атомов углерода в боковых цепях, что приводит к повышению их критической температуры растворения (КТР) в данном растворителе. Растворение же смолистых веществ и серооргаяических соединений, содержание которых увеличивается с повышением температуры выкипания фракции, происходит при более низкой температуре экстракции. В связи с тем, что КТР компонентов масляного сырья зависит от структурных особенностей их молекул и изменяется с изменением пределов выкипания фракции, одним из важнейших факторов процесса селективной очистки является фракционный состав сырья. При очистке масляных фракций, выкипающих в широком интервале температур, вместе с низкоиндексными компонентами удаляются и приближающиеся к [c.91]

    Комплексообразование с карбамидом. В 1940 г. Бенген [1] открыл способность карбамида образовывать кристаллические комплексы с парафиновыми углеводородами нормального строения. Первые исследования, относящиеся к 1949—1950 гг. [2—8], показали, что комплекс с карбамидом могут образовывать кроме нормальных парафинов слаборазветвленные изопарафины с достаточно длинным прямым участком цепи, циклические углеводороды с боковыми цепями нормального строения, а также другие органические соединения, содержащие в молекуле длинные не-разветвленные углеводородные цепи, в частности спирты, кислоты, эфиры, моногалоидные производные нормальных парафинов и др. Неразветвленная часть цепи должна быть тем длиннее, чем больще пространственная нагрузка и число заместителей в молекуле. Свойство карбамида образовывать комплексы с соединениями, имеющими парафиновые цепи нормального строения, используется при изучении химического состава сложных органических смесей, в частности масляных фракций нефти, так как позволяет разделить сложную смесь углеводородов на узкие фракции по структуре парафиновых цепей и в промышленности для получения низкозастывающих топлив и масел. [c.196]

    Выделенные из ароматического концентрата (фракция 200— 430° С) моноароиатические углеводороды представляли собой гомологические ряды углеводородов различной структуры, являющиеся в большей части гомологами бензола. В целом именно моноарома-тические углеводороды как обычного, так и смешанного типов строения — соединения, наиболее близки к насыщенным циклическим углеводородам нефтей, представляют, на наш взгляд, значительный интерес для химии и особенно для геохимии нефти. Среди них нередко можно встретить реликтовые структуры, происхождение которых не вызывает сомнения (например, моноароматические стераны и т. д.). К тому же моноароматические углеводороды — это группа углеводородов, которая достаточно легко и однозначно может быть выделена из общей смеси ароматических соединений жидкофазной адсорбцией на оксиде алюминия. [c.155]

    По легкости окисления насыщенные углеводороды можно расположить в следующий убывающий ряд нормальные алканы изо-и антеизоалканы изопреноидные алканы моноциклические нафтены прочие углеводороды. В силу избирательности процесса биодеградации, состоящего в постепенном потреблении микроорганизмами алифатических углеводородов, нефть обогащалась циклическими углеводородами и в зависимости от интенсивности и длительности этого процесса происходило стадийное изменение химического типа нефти по схеме -> Б . [c.239]

    Хотя исследование строения нафтенов проводится уже на протяжении почти ста лет, начиная с б.тестящих работ основоположника химии циклических углеводородов нефтей — В. В. Мар-ковникова, все же только в последние годы наши знания о строении сложных полициклических нафтенов несколько продвинулись вперед. Как уже указывалось в предисловии, трудности, стоящие здесь перед химиками в результате сложности строения и многокомпонентности смесей, весьма значительны. [c.343]

    Ввиду особой важности схема бимолекулярной конденсации непредельных кетонов, как схема во многом определяющая строение насыщенных циклических углеводородов нефтей, была проверена на примере более простого непредельного кетона 3-метил-цик лопентен-2-она. [c.380]

    В заключение подведем некоторые итоги этой главы. Насыщенные циклические углеводороды нефтей (нафтены) по своему строению являются сложными и своеобразными органическими соединениями. Моноциклические углеводороды представлены главным образом полиалкилзамещенными структурами ряда циклопентана и циклогексана. Для бициклических углеводородов характерно близкое расположение циклов в молекуле. Углеводороды этого типа принадлежат к алкилнропзводным бицикло(3,3,0)октана, би-цикло(3,2,1)октана, бицикло(4,3,0)нонана и бицикло(4,4,0)-декана. Трициклические углеводороды нефтей представлены метилзамещенными гомологами адамантана, а также, вероятно, другими трициклическими углеводородами, имеющими мостиковое строение. Нафтены, находящиеся в высококинящих нефтяных фракциях, далеко не одинаковы по степени своей цикличности. [c.381]

    Однако, хотя изонарафиновые углеводороды п отличаются предельно пологой температурой кривой вязкости, последняя по абсолютной величине крайне мала. Поэтому все же бесспорно больший интерес в качестве модельных углеводородов смазочных масел должны представлять циклические углеводороды, потому что они преобладают в смазочных маслах из природных нефтей и потому что им должно принадлежать важнейшее значение в деле синтеза высоковязких синтетических масел. [c.376]

    Исследование углеводородов, входящих в состав масляных фракций различных нефтей, в настоящее время распространяется главным образом на определение группового химического состава, ввиду чрезвычайных трудностей выделения индивидуальных углеводородов и выяснения их струхчтуры, вследствие большого числа изомеров в масляных фракциях. Одпако без знания (хотя бы грубо ориентировочного) строения углеводородов нельзя подойти к объяснению явлений, связанных с окислением масел, играющих чрезвычайно большую роль в практике использования всех масел и особенно снецпаль-ных их сортов (нанример, трансформаторных масел). Так как в природных маслах преобладают циклические углеводороды нафтенового н ароматического рядов, то строением углеводородов этих рядов, как показали обширные исследования Н. И. Черножукова и С. Э. Крейн [6], и определяется прежде всего характер отшсляемости масел. [c.390]

    Нафтеновые углеводороды принадлежат к циклическим углеводородам. Они были открыты в нефти выдающимся русским химиком В. В. Марковниковым и названы им нафтпенами. [c.12]

    Наиболее устойчивы пяти- и шестичленные циклы. Они и преобладают в нефтях — обнаружены многие гомологи циклопентана и циклогексана высшие фракции нефти содержат также би-циклические и трициклические углеводороды различного строения (С Н2г -2, С Н2я-4), главным обра юм с двумя общими атомами углерода. Кроме того, в нефти найдены углеводороды, представляющие собой различные комбинации пяти- и шестичленных циклов, часто содержащие ароматические кольца,— так называемые гибридные углеводороды (см. гл. 8). Углеводороды с трех- и четырехчленными циклами в нефтях не обнаружены. [c.122]

    Как видно из данных табл. 7.2, несмотря на то, что рассмотренные нефти различны по содержанию легких компонентов гг групповому составу, закономерности и распределении изомеров циклоалканов ряда циклопентана и циклогексана во всех нефтях достаточно близки. В настоящее время имеются данные о распределении циклоалканов С —Сд во многих нефтях как различных месторождений СССР, так и зарубежн з Х. Во всех исследованных нефтях распределение циклических углеводородов сохраняется примерно таким же, как в приведенных зыше примерах, [c.125]


Смотреть страницы где упоминается термин Нефть циклические углеводороды из нее: [c.263]    [c.37]    [c.467]    [c.473]    [c.266]    [c.356]    [c.317]    [c.8]    [c.32]    [c.11]    [c.77]    [c.206]    [c.254]    [c.254]   
Химия углеводородов нефти и их производных том 1,2 (0) -- [ c.984 ]




ПОИСК





Смотрите так же термины и статьи:

Углеводороды циклические



© 2025 chem21.info Реклама на сайте