Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Глина изомеризация

    Установлено, что уменьшению количественного содержания пятичленных нафтенов в бензиновых фракциях по горизонтам соответствует увеличение количественного содержания шестичленных нафтенов. Изучение поведения алкил-циклопентановых углеводородов в присутствии глины дает основание предположить, что в природе имеет место процесс изомеризации гомологов циклопентана в циклогексановые углеводороды. [c.145]


    Для того, чтобы экспериментально подтвердить предположение одного из нас [1] надо было проследить как будут изменяться циклопентановые углеводороды, входящие в состав бензинов при контакте с глинами, этому вопросу и посвящено данное исследование. Значение проведенной работы не ограничивается сугубо теоретическим интересом, оно имеет и большое практическое значение, так как в результате изомеризации гомологов циклопентана, входящих в состав бензинов н дальнейшим их дегидрированием, процент ароматических углеводородов во много раз может быть повышен. Обогащение бензинов ароматическими углеводородами имеет особый интерес для ряда отраслей народного хозяйства. [c.215]

    В термических реакциях наблюдается движение двойной связи [455—458], а в разветвленных структурах может происходить некоторое перемещение метильных групп, уже присутствующих в системе, но новые разветвленные структуры не образуются. То же можно сказать и о мягких катализаторах, таких как алюминий нри 400—450° С [459—461] и сульфат алюминия при 270—290° С [462—464]. Однако катализаторы, обладающие кислотными свойствами, вызывают перемещение метильных групп или разветвление цепи. Это в особенности справедливо для тех случаев, когда олефины проходят через окисленный алюминий при 300° С-370° С [465, 466, 462, 461], глины при 290° С [467], кремний-алюминиевые катализаторы крекинга при 400—600° С [468, 469] и кислоты, такие как фосфорная, при 200—350° С [470]. Сильные кислоты, такие как серная кислота и хлористый алюминий, являются эффективными агентами изомеризации при комнатной температуре, но их применение сопровождает значительный крекинг углеводородов.  [c.120]

    При алкилировании фенолов спиртами в паровой фазе в качестве катализаторов используют природные глины, алюмосиликаты, цеолиты, а также окислы алюминия, магния, титана, тория и их смеси. Обладает каталитической активностью также поли-фосфорная кислота, осажденная на термостойком носителе. Реакцию проводят при 250—500 °С, главным образом с низкомолекулярными спиртами С1—С4. Состав продуктов реакции зависит от условий процесса и селективности катализатора. Большинство известных катализаторов ориентируют алкильные заместители в орто-положение. Однако на многих из них при повышенной температуре также хорошо образуются м- и л-изомеры. Жесткие условия алкилирования способствуют протеканию побочных процессов. Так, при изучении превращений л-н-пропилфенола на алюмосиликатном катализаторе [98] при 300—350 °С отмечено образование фенола, ж-н-пропилфенола, ди- и триалкилфенолов ге-крезола и л-этилфенола, т. е. одновременно протекают деалкилирование, изомеризация, диспропорционирование и расщепление. При низких температурах основные продукты алкилирования— алкилфениловые эфиры, которые являются, по-видимому, промежуточными продуктами при образовании алкилфенолов. Выходы последних при парофазном алкилировании довольно высоки и при соответствующем подборе катализатора и оптимальных условий могут достигать 80—95%. [c.232]


    Изомеризация пинена. Переход от пинена к камфену осуще ствляется путем каталитической изомеризации. При этом, кромЕ основной реакции образования камфена, протекают побочные. По исследованиям В. Е. Тищенко и Г. А. Рудакова, при изомеризации пинена с активными глинами процесс схематично можно выразить так  [c.303]

    Изомеризация олефинов, мало возможная в термическом процессе, очевидно, играет очень важную роль в присутствии таких катализаторов, как активированные глины. [c.57]

    Содержание бутана уменьшается с увеличением температуры, и такое же поведение наблюдается для изобутана. Содержание изобутана в бутановых фракциях при температурах ниже 500° выше равновесного, и из этого следует, что на катализаторах, нанесенных на отбеливающую глину, изомеризация предшествует деструктивному гидрированию аналогично тому, как это наблюдается на вольфрамсульфидном катализаторе. Однако изомери-зующая способность отбеливающей глины выражена еще сильнее. Согласно рис. 21, содержание изобутана при 400-С равно 65%, а в случае сульфида вольфрама содержание изобутана составляет 50%. При применении катализаторов, нанесенных на активированный уголь, содержание бутана в отходящих газах значительно снижается, а содержание изобутана меньше того, которое отвечает равновесной кривой. Это указывает на совершенно другой механизм деструктивного гидрирования. Катализаторы такого типа обнаруживают аналогичное поведение и в отношении фракций бензина, кипящих при более высокой температуре. [c.312]

    X. И. Ареглидзе впервые применил монтмориллонитовые глины Грузии и их модифицированные формы в катализе, в контактно-каталитических превращениях спиртов, олефинов, циклоолефинов и сераорганических соединений. Им было показано, что олефины на вышеуказанных алюмосиликатах подвергаются изомеризации как с мт1грацией двойной связи с периферии к центру молекулы, так и с разБствлением углеродного скелета. Подобная изомеризация олефнновых углеводородов способствует повьпиению их октановых чисел, что имеет определенное практическое значение для облагораживания крекинг-бензинов. [c.6]

    В своих раб )Т ь но изучению каталитических свойств алюмосиликатов в направлении пизк()те1мнсратурных процессов полимеризации, расщепления и изомеризации олефинов С. В. Лебедев исследовал кроме флоридина каолины и кавказскую глину [35]. С. В. Лебедев, как и Л. Г. Гурвич 119], употреблял флорндин торговой марки Венсмен [22] следующего состава 55,3 % SiO 21 % А ,Оз + Fe Og 4,3 % aO -f MgO 1,9 % К.,0 + Na O 17,9 % Н О. [c.47]

    Каталитическая изомеризация пинена над активированной глиной описана В. Е. Тищенко и Г. А. Рудаковым [44], которые также установили, что действие флоридина напоминает действие серной кислоты. Я. М. Слободин [45]. изучая поведение дипентена в присутствии флоридина, наблюдал, подобно Венабле [43], его изомеризацию, но дал другую схему процесса. [c.48]

    Дальнейшие систематические исследования каталитических свойств природных алюмосиликатов (флоридина и кавказской активной глины) проводит С. В. Лебедев [12, 13]. Он последовательно вскрывает глубокие возможности низкотемпературных каталитических преобразований углеводородов над природными катализаторами — флоридинами, кавказскими глинами и каолинами — в температурном интервале от —80 до 260 С [14—22]. С. В. Лебедев придавал особое значение активности катализатора. Он первый применил искусственную тепловую активацию природных г.тии и изучил механизм изомеризации олефипов под воздействием алюмосиликатов, показав способность алюмосиликатов вызывать по только неремоп ение двойной связи в цепи молекулы, но и скелетньсе изменення, приводящие к переходу несимметричной структуры олефипов в симметричную. Наконец, с исчерпывающей полнотой С. В. Лебедев доказал, что в области температур выше 250 °С парофазный процесс катализа над природными алюмосиликатами является по существу типичным сложным процессом каталитического крекинга, когда гладкая деполимеризация полимерных олефинов переходит в совокупность реакций дегидрогенизации, распада на элементы и глубокого дегидроуплотнения молекул с одновременным образованием парафинов. [c.158]

    Согласно органической теории, источником углеводородов нефти являлись компоненты дисперсно) о органического вещества сапропелевой природы. Процесс происходил в главную фазу нефтеобразования (ГФН), на глубине, при 100—200°С, термически или термокаталитически под воздействием глии. Глины, являясь природными алюмосиликатными катализаторами, стимулируют реакции дегидратации спиртов и декарбоксилирования кислот в углеводороды, изомеризации и полимеризации алкенов, деструкции и перераспределения (диспропорнионирования) водорода и многие другие. Тем не менее один из наиболее сложных вопро- [c.35]

    Значительно более прогрессивны и экономичны процессы каталитического облагораживания масляного сырья и синтеза новых углеводородов в результате глубоких термокаталитических превращений в присутствии водорода. В этих процессах (гидрирования, гидрокрекинга, изомеризации) нежелательные компоненты сырья преобразуются в углеводороды нужной структуры, что позволяет использовать для производства масел сырье различных состава и происхождения. В настоящее время гидроизомеризацией гачей и очищенных парафинов удается получать базовые масла с индексом вязкости до 150. Каталитическое гидрирование как один из процессов очистки в производстве масел стал развиваться сравнительно недавно. В СССР впервые гидроочистка депарафинированного масла фенольной очистки была осуществлена в 1960 г. на Новокуйбышевском НПК- Гидродоочистку используют вместо доочистки глинами или селективной очистки. Условия и результаты процесса гидродоочистки определяются в основном составом сырья, качеством катализатора и требованиями к готовой продукции. [c.45]


    Изомеризация циклопентанов в циклогексаны и одновременное дегидрирование последних в ароматические углеводороды являются одними из основных реакций, протекающих при новых процессах каталитического риформинга (платформинга, гудриформинга и др.). В процессе нлатформинга катализатором служит смесь из глины, активированной ионом фтора и платины глина является катализатором изомеризации, а платина — катализатором дегидрирования (более подробные сведения об этой реакции приведены в гл. 14). Описанные процессы служат дополнительными примерами того, как трудно получить с помощью каталитической реакции Св-нафтены, избежав одновременно дегидрирования нафтенов в ароматические углеводороды. [c.234]

    В ряде работ А. В. Фрост с сотрудника.ми [29] иоказал , что различные алюмосиликаты и глины при нагревании действуют на органические соединения так же, как и хлористый алюминий, но менее энергич 0. Нанример, при 200 1 ниже алюмосиликаты ката-,визируют дегидратации спиртов, полимеризации, изомеризации, лкилирование, диспропорционирование водорода, декарбоксили-рование кислот. Касторовое масло, олеиновая кислота и другие вещества дают нефтеобразные масла. Высокомолекулярные органические соединения при нагреванин с алюмосиликатами образуют [c.334]

    Простейшие случаи изомеризации олефинов подробно были изучены в позднейшее время с разными жидкими и твердыми катализаторами. Особенно детально исследована изомеризация низших олефинов. При изучении изомеризации бутена-1 в бутен-2 В. Н. Ипатьев, И. А. Орлов и А. Д. Петров [11] применяли хлористый цинк, бензол сульфоновую или хлорную кислоту и реакцию проводили при нормальном давлении и температуре 21, 76 и 100°. Они получали смеси бутенов, содержащие до 21 % бутена-2. Другие авторы для этого же процесса применяли твердые катализаторы диатомит, глины, фарфор, боксит, силикаты, пемзу, окислы тория, титана и др. Из большого числа работ следует указать на исследования В. И. Ипатьева и X. Пайнса [12], проводивших изомеризацию бутена-1 в бутен-2 над различными кислыми катализаторами. [c.560]

    Хотя все нефти состоят главным образом из насыщенных углеводородов, они зачастую очень сильно различаются по своему химическому составу даже в тех случаях, когда их добывают из разных пластов одного и того же месторождения. Это объясняется тем, что образовавшиеся вначале жирные кислоты различным образом изменялись под влиянием окружающей среды. Щелочные минералы могли способствовать циклизации нли образованию кетонов (ср. стр. 218), глины, обладающие кислыми свойствами, — наоборот, могли вызывать изомеризации. Декарбоксилирование жирных кислот могло протекать как под влиянием бактерий, так и чисто химическим путем. Высокая температура, очевидно, вызывала различные реакции расщенления давление также имело значение для дальнейших превращений. [c.84]

    Более прогрессивен процесс термокаталитической деструкции олиго- и полиизобутиленов, который проводится в присутствии природных и синтетических алюмосиликатов, фосфорсодержащих соединений, активированного оксида алюминия и других катализаторов (табл.7.13). Лучшим из них является отбеливающая глина атапульгис , позволяющая при относительно низких температурах получать изобутилен с достаточно высокой конверсией. Использование стандартных катализаторов крекинга углеводородов нежелательно из-за способности к переносу атома водорода, что приводит к образованию в продуктах реакции распада ПИБ до 20%) насыщенных углеводородов. Промышленные алюмосиликатные катализаторы, характеризующиеся широким набором кислых центров, проявляют относительно высокую активность в реакции изомеризации [содержание а-бутилена до 2% (масс)]. В значительной степени реакция изомеризации протекает и на активированном оксиде алюминия. Введение щелочных добавок приводит к снижению содержания а-бутиленов в продуктах реакции термокаталитической деполимеризации ПИБ, в то время как повышение концентрации и силы кислотных центров заметно увеличивает роль реакции изомеризации. [c.350]

    Тяжелую фракцию риформата (в смеси с продуктами изомеризации) очищают от непредельных углеводородов на активной глине и направляют на четкую ректификацию. Туда же поступает и ксилольная фракция продуктов трансалкилирования. При четкой ректификации выделяют товарный о-ксилол арены Сд направляют на трансалкилирование, а смесь аренов-Са (п- и Л1-КСИЛ0ЛЫ и этилбензол) — на адсорбцию для выделения п-ксилола. Адсорбция протекает на цеолитах (процесс Па-рекс). Оставшаяся смесь Л1-ксилола и этилбензола изомеризуется на бифункциональном катализаторе, содержащем платину на кислотном носителе, при 400—450 °С под давлением [c.358]

    С 1931 г. изомеризацию пинена под действием глин начали изучать Тищенко и Рудаков. Они ставили целью использовать эту реакцию для получения камфена. Все свои выводы авторы строили на количественном определении его в продуктах реакции. Разработанный ими метод анализа был основан на превращении камфена в изоборнилацетат и последующем омылении этого эфира [175]. В результате проделанной работы Тищенко и Рудаков показали, что при проведении реакции в наиболее благоприятных условиях выход ацетилирующихся терпенов, которые они принимали за камфен, достигает 55—62% [174]. [c.37]

    Ряд исследователей проводили работы по улучшению каталитического способа получения камфена с использованием тех же алю.мосиликатных катализаторов. Значительная часть исследований была посвящена поискам лучших катализаторов среди еще не испробованных для этой цели алюмоспликатов. Исследования Гурвича [63] — изомеризация пинена флоридином, Тищенко н Марга [172] — применение каолина и боксита и Тищенко и Рудакова [174] — применение глин чрезвычайно сузили возможности патентования, тем более что Тищенко и Рудаков писали не о глинах как таковых, а об образующих их алюмокре.мневых кислотах, что, по-существу, распространяло их публикацию на все алюмосиликаты. Тем не менее в СССР и в США были получены авторские свидетельства н патенты на изомеризацию пииена рядом алю-  [c.44]

    Моноциклические терпены под действием катализаторов, используемых для изомеризации пинена, необратимо полимери-зуются. В соответствии с этим при неограниченно долгом нагревании моноциклических терпенов с этими катализаторами они могут быть количественно превращены в смесь, состоящую из терпеновых полимеров, с п-цимолом и п-ментеном. Так, например, в результате длительного нагревания дипентена с активной часовярской глиной было получено 72% полимеров и 28% смеси, состоящей из равных количеств /г-цимола и /г-ментена [127]. [c.54]

    Рудаков Г. А., Хоменко 3. С., Шестаева М. М. Механизм взаимодействия пинена, камфена и лимонена с катализаторами, вызывающими их изомеризацию титановой кислоты и активированной глиной. Там же, с. 549— 557. [c.194]

    Высокие отборы целевых продуктов бензола, о-кси-лола и и-ксилола достигнуты на комплексах для производства ароматических углеводородов (КПА). Комплекс включает в качестве головной установку каталитического риформинга фракции 85-140 °С с непрерывной регенерацией катализатора, экстракцию риформата су ц,фояаном, деалкилирование толуола, трансалкили-рование ароматических углеводородов С7 и С и изомеризацию ксилолов. Продукты этих процессов очищают от примесей олефршовых углеводородов на активных глинах, бензол и о-ксилол выделяют четкой ректификацией, а и-ксшюл — адсорбцией на цеолитах. [c.872]

    Флоридин, г.т1уховская глина, сульфат алюминия и фосфорная кислота иа твердом носителе вызывают изомеризацию углеродного скелета бутилеыов. Лучшим изомеризующим катализатором является фосфорная кпслота па твердом носителе — кизельгуре [20]. Фосфорная кислота катализирует реакции дегидратации, изомеризации и полимеризации. При введении в реакционную смесь водяного пара полимеризация снижается. При 300° равновесная смесь состоит из равных количеств изобутилена и суммы н, бутиленов 121]. [c.101]

    Комплексообразующие катализаторы, к которым относятся хлористый алюминий (А1С1з), синтетический алюмосиликат и активированные естественные глины. Для этих катализаторов характерны реакции перераспределения водорода, которые приводят к получению б.ензина и газа с малым содержанием непредельных углеводородов, а также реакции изомеризации олефинов, повышающие антидетонационные свойства бензина. Алюмосиликатный катализатор широко используется в процессах каталитического крекинга. [c.162]

    Эглофф, Моррелл, Томас и Блох [26] исследовали каталитичзскгй крекинг олефинов (н-октена и гексадецена) в присутствии активированной глины. Они подробно изучили продукты разложения, но не определили количество и характер продуктов конденсации, образовавшихся при крекинге. Как и в случае парафинов, скорость крекинга олефинов при каталитическом процессе гораздо выше, чем при термическом крекинге. Изомеризация олефинов при каталитическом крекинге будет рассматриваться ниже. [c.47]


Смотреть страницы где упоминается термин Глина изомеризация: [c.152]    [c.88]    [c.106]    [c.108]    [c.122]    [c.48]    [c.53]    [c.53]    [c.76]    [c.82]    [c.119]    [c.155]    [c.190]    [c.119]    [c.130]    [c.189]    [c.686]    [c.244]    [c.310]    [c.257]    [c.151]    [c.60]    [c.53]   
Гетерогенный катализ в органической химии (1962) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Глины



© 2024 chem21.info Реклама на сайте