Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Глина крекинг

    Скорость крекинга сильно зависит от температуры. С понижением температуры глубина разложения углеводородов уменьшается. Без катализаторов углеводороды практически не расщепляются при температурах ниже 360°, в присутствии же катализаторов они крекируются и при более низких температурах. Например, по данным А. Ф. Добрянского и Г. Я. Воробьевой твердый парафин в присутствии природной глины гумбрина крекируется при 300° с образованием легких жидких продуктов и газа. [c.15]


    Природные катализаторы в естественном виде или активированные кислотой специальные глины в виде цилиндриков раз-мерами 3—4 мм. Такие катализаторы широко применяются при крекинге тяжелого сырья для получения автомобильных бензинов с высоким октановым числом (до 78 пунктов по моторному методу). [c.48]

    Иногда могут оказаться необходимыми дополнительные ступени подготовки исходного продукта, если этот продукт был получен в результате крекинга и содержит диолефины или перекиси. Некоторые диолефины вступают в реакцию с растворителем (фенолом) и образуют неактивный смолистый продукт. Диолефины можно удалить при помощи таких методов, как обработка глинами, каталитическое или химическое воздействие. Перекиси можно восстановить [c.105]

    Крекинг-процесс предъявляет строгие требования к свойствам катализатора. Катализатор должен обеспечить не только требуемые выходы продуктов, но также и удовлетворительное качество их. Он должен противостоять действию высокой температуры при регенерации, а также обладать достаточной устойчивостью к истиранию как в процессе крекинга, так и при регенерации. Катализатор, кроме того, должен обладать определенным сочетанием химических и физических свойств. Эти требования ограничивают выбор материала, который может быть использован в качестве катализатора крекинга. Из большого числа исследованных катализаторов лишь немногие имеют требуемые свойства и, кроме того, недороги в производстве. С точки зрения сырья, используемого для приготовления катализаторов, последние делятся на два класса естественные и синтетические. В качестве естественных катализаторов могут быть использованы природные бентонитовые глины [11, 12] типа монтмориллонита и другие природные алюмосиликаты, такие как каолин и галлуазит. Синтетические катализаторы могут быть приготовлены из окиси кремния в комбинации с окисями алюминия, циркония или магния. Химия производства катализаторов обоих типов очень сложна и здесь обсуждаться не будет. Большинство катализаторов каталитического крекинга различаются по их активности и стабильности и при сравнимой активности обеспечивают лишь незначительные различия в распределении и качестве продуктов крекинга. В табл. И приводится сравнение действия катализаторов синтетического алюмосиликатного шарикового, двух типов природных глинистых и синтетического катализатора из окисей магния и кремния. [c.154]

    В термических реакциях наблюдается движение двойной связи [455—458], а в разветвленных структурах может происходить некоторое перемещение метильных групп, уже присутствующих в системе, но новые разветвленные структуры не образуются. То же можно сказать и о мягких катализаторах, таких как алюминий нри 400—450° С [459—461] и сульфат алюминия при 270—290° С [462—464]. Однако катализаторы, обладающие кислотными свойствами, вызывают перемещение метильных групп или разветвление цепи. Это в особенности справедливо для тех случаев, когда олефины проходят через окисленный алюминий при 300° С-370° С [465, 466, 462, 461], глины при 290° С [467], кремний-алюминиевые катализаторы крекинга при 400—600° С [468, 469] и кислоты, такие как фосфорная, при 200—350° С [470]. Сильные кислоты, такие как серная кислота и хлористый алюминий, являются эффективными агентами изомеризации при комнатной температуре, но их применение сопровождает значительный крекинг углеводородов.  [c.120]


    В присутствии катализаторов адсорбционного типа термическая устойчивость сернистых соединений существенно снижается. Это обстоятельство положено в основу целого ряда промышленных процессов каталитической сероочистки. Нециклические сернистые соединения (меркаптаны, сульфиды и дисульфиды), содержащиеся в прямогонных бензино-лигроиновых фракциях, легко разлагаются на олефин и сероводород при парофазном контактировании с отбеливающими глинами [191, 192], с окисью алюминия [193—195] или с алюмосиликатным катализатором крекинга [196, 197]. Соответствующие технологические процессы проводятся при температуре порядка 340—430° С и давлении около [c.250]

    Среди различных методов, применявшихся прежде, только один Грэй-процесс существует до сих пор. Дистиллятные пары выводятся непосредственно из ректификационной колонны крекинг-установки и пропускаются сверху вниз через отбеливающую глину. Часть тяжелых фракций дистиллята конденсируется и служит в качестве растворителя для растворения полимеров, выделенных в адсорбционной башне. Пары, покидающие адсорбционную башню, фракционируются в ректификационной колонне для получения бензина с заданным концом кипения тяжелые фракции растворяют полимеры, которые скопились в адсорбционной башне, и обычно возвращаются на крекинг-установку. Чтобы не допустить чрезмерного коксообразования, они раньше пропускаются через эвапоратор (или смолоотделитель), где более тяжелые полимеры удаляются вместе со смолой. Эти более тяжелые полимеры интересны возможностью применения их вместо окрашенных смол. [c.273]

    Каталитическое влияние природных глин на крекинг нефтепродуктов было обнаружено много лет тому назад, но приблизительно до 1936 г. алюмосиликатные катализаторы не применялись в промышленных масштабах. С 1936 г. началось постепенное [c.322]

    Известны многие вещества, обладающие способностью повышать скорость крекинга нефтепродуктов, но высокие выходы желаемых продуктов получаются лишь при переработке с применением гидратированных алюмосиликатов. В промышленности могут использоваться активированные (обработанные кислотой) природные глины типа бентонита и синтетические алюмосиликатные или магниево-силикатные катализаторы [281, 286]. Их активность можно в некоторой степени увеличить добавкой малых количеств окисей циркония, бора (последняя имеет тенденцию улетучиваться во время процесса) и тория. При введении этих добавок состав продуктов крекинга в основном не изменяется. Как природные, так и синтетические катализаторы могут применяться в виде шариков, таблеток или порошка в любом случае необходима их своевременная замена вследствие потерь от истирания и постепенного снижения активности. [c.339]

    Ценнейший вклад в науку о нефти и методах ее переработки внес выдающийся химик-нефтяник Л. Г. Гурвич. В своей книге Научные основы переработки нефти , выдержавшей четыре издания, переведенной на многие иностранные языки, Л. Г. Гурвич критически сопоставил и обобщил литературные и экспериментальные данные по химии и переработке нефти. Оригинальными являются воззрения Л. Г. Гурвича о действии водяного пара и роли вакуума при перегонке мазута, о роли серной кислоты и щелочи при очистке нефтепродуктов. Он исследовал обесцвечивающую способность отбеливающих глин по отношению к нефтепродуктам, обнаружил при этом помимо адсорбционных свойств каталитическое (полимери-зующее) действие естественных алюмосиликатов и разработал теоретические основы адсорбционной очистки масел. Л. Г. Гурвич установил закономерности, лежащие в основе современной хроматографии и каталитического крекинга на алюмосиликатных катализаторах. [c.12]

Таблица 10. Каталитическая активность активированной глины № 1 с различной остаточной кислотностью в крекинге Таблица 10. <a href="/info/3231">Каталитическая активность</a> <a href="/info/139406">активированной глины</a> № 1 с различной остаточной кислотностью в крекинге
    X. И. Ареглидзе впервые применил монтмориллонитовые глины Грузии и их модифицированные формы в катализе, в контактно-каталитических превращениях спиртов, олефинов, циклоолефинов и сераорганических соединений. Им было показано, что олефины на вышеуказанных алюмосиликатах подвергаются изомеризации как с мт1грацией двойной связи с периферии к центру молекулы, так и с разБствлением углеродного скелета. Подобная изомеризация олефнновых углеводородов способствует повьпиению их октановых чисел, что имеет определенное практическое значение для облагораживания крекинг-бензинов. [c.6]

    Первая промышленная установка по каталитическому крекингу керосино — газойлевых фракций была пущена в США в 1936 г., которая представляла собой П(фиодически регенерируемый процесс со стационарным слоем катализатора из природной глины. В 1940 г. природная глина была заменена на более активный синтетический гранулированный алюмосиликатный катализатор (установки Гудри). В 1942 г. промышленный процесс каталитического крекинга переводят на непрерыв — Н ТО схему с применением шарикового катализатора, циркулирующего между реак — Т( ром и регенератором (зарубежные установки термофор, гудрифлоу, гудрезид, [c.102]


    При проведении крекинг-процесса в заводских масштабах в качестве катализаторов применяют пористые алюмосиликатные ктивированные природные глины и синтетические алюмосили- атня катализаторы в виде порошков, микросферичесхшх часпш [c.5]

    Сланцевое масло в противополон<ность нефти не яиляется природным продуктом. Оно образуется при пиролизе органической части горючих сланцев его состав в значительной степони зависит от условий производства. Горючие сланцы состоят из различных неорганических компонентов, в которых обычно преобладает глина, связанная с органическими компонентами. Органическая часть горючих сланцев ограниченно растворима в обычных растворителях в ее состав входят углерод, водород, сера, кислород и азот. При нагревании горючие сланцы разлагаются и выделяют газ, сланцевое масло и углеродистый остаток (кокс), который остается в отработанном сланце. Получающееся сланцевое масло иапоминает нефть, так как состоит из углеводородов и их производных, содержащих серу, азот и кислород. Неуглеводородных компонентов в сланцевом масле значительно больше, чем в нефти, углеводородная ше часть содержит менее насыщенные соединения, чем углеводородная часть нефти по составу она напоминает, как и можно было ожидать, продукты термического крекинга. [c.60]

    Все промышленные катализаторы крекинга содерн< ат окиси кремния и алюминия. Были приготовлены гакже активные катализаторы, состоящие из окисей циркония и кремния и из окисей магния и кремния, но по различным причинам они не полумили промьпнлениого применения. Первоначально катализаторы приготовлялись исключительно из глин. Позднее стали применяться синтетические катализаторы, которые составляют сейчас основную массу используемых катализаторов (70%). Еще на первой стадии развития крекинг-процессов было найдено, что эффективность различных катализаторов может меняться в широких пределах. Были разработаны стандартные методы для эмпирического определения активности катализаторов. Такие методы не только дали вoзмoнiнo ть контролировать производство катализаторов, но также помогли разработке новых более совершенных катализаторов. Эти методы [1, 7, 15] основаны на определении активности катализатора в стандартных условиях, приближающихся к условиям работы промышленных установок. [c.152]

    Крекинг—это процесс превращения высокомолекулярного газойля в бензин. Крекинг может быть проведен и без катализатора, но каталитический крекинг-процесс дает лучшие результаты. В качестве промышленных катализаторов применяют натуральные глины, синтетические алюмосиликаты и магнийсиликаты. Обьйно катализатор содержит также промоторы. Условия проведения процесса, природа исходного сырья и катализатора обусловливает выход и октановое число бензина, а также количество и состав побочных продуктов. [c.335]

    Процесс в основном протекает при давлении от 3,5 до 28 атм и температуре от 138 до 260° С в зависимости от теплосодержания лигроина и его конечной точки кипения температура верха не должна быть настолько высока, чтобы испарилась некоторая часть полимеров. Длительное время контакта в башне, обусловленное высоким давлением, не влияет на октановое число, но незначительно увеличивает потери на образование полимеров и повышает общую эффективность. Одной тонной фуллеровой земли можно обработать от 159 до 4770 дистиллята в зависимости от вида дистиллята, условий крекинга и особенностей бензина. Для активации глины используется пар. [c.273]

    Каталитический крекинг сопровождается достаточно полным обессериванием полученного бензина, но это обессеривание часто осуш ествляется ценой быстрого старения катализатора. Синтетические алюмосиликатные катализаторы более устойчивы к сернистым соединениям, чем активированные природные глины устойчивость последних к действию серы может быть повышена. Вследствие глубокого обессеривания бензины сравнительно легко поддаются очистке. Значительная часть серы удаляется в виде тиофенолов (ср. с тиофенами при термическом крекинге) при ш елочной промывке. [c.325]

    Контактная очистка глинами бензинов термического крекинга катализирует процессы полимеризации нестабильных диолефинов и циклоолефинов (см. гл. V) и сводит до минимума потребность в химической очистке или стабилизации. Метод этот широко применяется для облагораживания продуктов термического крекинга, но вспользование термического крекинга в практике современной нефтепереработки невелико. Продукты каталитиче- [c.387]

    Вначале работа установки каталитического крекинга была основана на принципе полупериодического процесса. В 40-х годах промышленный процесс переводят на непрерывную схему с циркуляцией крупногранулированного шарикового катализатора. В первые годы развития промышленного каталитического крекинга в качестве алюмосиликатного катализатора использовались природные активные глины, отличающиеся соотношением оксида кремния ЗЮа и оксида алюминия АЬОз. [c.47]

    В. С. Гутыря высказал предположение о связи установленной закономер-пости с воздействием на нефть природных алюмосиликатов (глип), залегающих на пути ее миграции или ограничивающих толщи нефтецосных пород. Влияние алюмосиликатов на свойства нефтей отмечал уже И. М. Губкин, однако связывал его только с адсорбционной снособностью глин. В частности, низкое содержание смол в нефтях Сураханского месторождения И. М. Губкин объяснил наличием в местах залегания большого количества природных глин и адсорбцией на глинах смолистых компонентов нефти. В. С. Гутыря на основании изучения каталитических свойств активированных и природных алюмосиликатов пришел к выводу о возможности реализации каталитической способности глин при контакте с нефтью в природных условиях. Наиболее вероятной представлялась возможность протекания в условиях залегания нефтепасыщенных алюмосиликатных пород медлеттого низкотемпературного жидкофазного крекинга и процессов гидрирования ароматических углеводородов. [c.8]

    В указанных условиях алкилирование ароматических углеводородов может быть осуществлено ие олефинами, а парафина. ги, способными дегидрироваться или расщепляться до олефинов. Согласно [511, бензол при температуре 477 °С и продолжительности контакта с активированной глиной 90 мин алкилировался пентаном с выходом алкилароматических углеводородов до 40 %, считая на взятый пентан. Увеличение времени контакта ведет к накоплению низкомолекулярных алкилароматических углеводородов, т. е. углубляет процесс крекинга боковых цепей первично образо авпшхся высокомолекулярных алкилароматических углеводородов. [c.50]

    Кларк [78], сопоставляя наиболее характерные параметры термического и каталитического крекипга, указывает, что в последн< м процессе применяются не только синтетические, но и природные активированные глины. Фостер [79] под естественными катализаторами для каталитического крекинга подразумевает глины, бокситы, глинозем, силикаты и другие природные материалы, подвергнутые физической и химической обработке с целью их очистки и улучшения каталитических свойств, но при условии сохранения природного состава. Петеркин с соавторами [80], описывая каталитический риформинг Гудри, в качестве катализатора называет высокоактивный гидросиликат алюминия. [c.56]

    Обзор патентов за 1939—1941 гг. позволяет сделать вывод, что для различных форм парофазного каталитического крекинга н пoJ[ьзyют я в основном три группы алюмосиликатных катализаторов, а имекжс различные природные материалы типа отбеливающих глин, активированные тем или иным [c.56]

Таблица 10. Характеристика продуктов термического и каталитического крекинга стандартного газойля суруханской отборной нефтн при скорости питания 0,6 объемов сьфья на 1 объем глины в 1 ч и атмосферном давлении Таблица 10. <a href="/info/572276">Характеристика продуктов</a> термического и <a href="/info/25178">каталитического крекинга</a> стандартного газойля суруханской отборной <a href="/info/1568802">нефтн</a> при <a href="/info/304968">скорости питания</a> 0,6 объемов <a href="/info/151041">сьфья</a> на 1 объем глины в 1 ч и атмосферном давлении
    При изучении каталитического крекинга приходилось считаться с тем, что температуры глубокого крекинга лежат в пределах 400—500, а температура регенерации глипы — в пределах 500—600 С. Так как сырье подавалось на уже нагретую до температуры опыта глину, то глина в наших экспериментах неизбежно должна была нагреваться до 500 и при этом активироваться и обезвоживаться под влиянием тенла. Данное обстоятельство заведомо нарушает условия тепловой активации, подобранные С. В. Лебедевым глину сушили при 100—120 °С, а затем переносили в трубчатый реактор, в котором ее температура в течение 2—3 ч повышалась до температуры опыта, т. е. до 400—500 °С. Этот режим теплового активировапия определялся конструкцией и электрическими параметрами лабораторной установки (время нагрева глины), а также температурным режимом исследуемого процесса. При регенерации температура глины в течение 1 ч повышалась до 550 С и затем медленно снижалась до исходной величины. [c.82]

    Уже отмечалось, что в соотношение адсорбционных свойств и каталитической активности глип изнестное искажение вносиг их тепловое активиро-лапие, которое неизбежно при каталитическом крекии] е и последующей регенерации катализатора. Для учета этого фактора определена адсорбционная способность глин после каталитического крекинга и процесса регенерации (см. табл. 3 и 5). [c.86]

    Подобно тому как кислотное активирование глин резко снижает их адсорбционную способность и в то же время увеличипает каталитическую активность, тепловая обработка глин (активированных и неактивированных) в процессе каталитического крекинга и регенерации уменьшает адсорбционную способность, не уменьшая каталитической активности, поскольку один и тот же образец глины в ряде последовательных цнк.тов каталитического крекинга, чередующихся с циклами регенерации, дает примерно одинаковый выход бензина для каждого цикла. Определение адсорбционной активности с учетом тепловой обработки глин в процессе крекинга н регенерации также не позволяет установить связи между адсорбционной способностью и каталитическими свойствами. Наиример, карачухурская глина с нулевой адсорбционной способностью повышает выход бензина по сравнению с сураханской глиной в полтора раза, хотя сураханская глина обладает некоторой адсорбционной способностью. Зачатьевский каолин, по адсорбционной способности (после регенерации) равный сураханской глине, дает более чем в два рала больше бензина и т. д. [c.86]

    Следовательно, ни химический состав, ни адсорбционную способпость глип пельзя считать основным признаком ири выработке тех или иных природных материалов в качестве катализатора в процессе крекипга. Решающим фактором должно быть пеиосредственное изучение их поведения в процессе каталитического крекинга, чем мы и руководствова. ись в выборе оптимальных условий процесса активации глин № 1, 3 и 4, на которых необходимо остановить свой выбор как на наиболее эффективпг.1х катализаторах. [c.86]

    Сравнение каталитической активности глин, ак 1 икированных соляггой и серной кислотами, показывает, что сернокислотное активирование дает лучший эффект, чем солянокислотное. Но фактически режим сернокислотного активирования подобран с точки зрения получения глины, достаточно активной для обесцвечивания смазочных масел, т. е. для процесса, принципиально отличающегося от глубокого крекинга. Именно поэтому следовало ожидать, что более детальное изучение условий активирования помогло бы подобрать истинный оптимальный режим. [c.86]

    Окончательное решение вопроса о степени нейтральности активированной глины должно бы ь принято при организации промыш пенного процесса с учетом возможной коррозии оборудования, в котором прэи н ()дится формовка таблеток из слегка кислой глины, и оборудования и материала каталитических камер крекинг-установок. С точки зрения сохранения высокой каталитической активности глины может быть допущена остаточная кислотность 1 %. [c.93]


Смотреть страницы где упоминается термин Глина крекинг: [c.20]    [c.160]    [c.104]    [c.108]    [c.259]    [c.51]    [c.54]    [c.54]    [c.56]    [c.66]    [c.79]    [c.84]    [c.87]    [c.89]    [c.89]    [c.91]    [c.92]    [c.92]   
Гетерогенный катализ в органической химии (1962) -- [ c.160 ]




ПОИСК





Смотрите так же термины и статьи:

Глины



© 2025 chem21.info Реклама на сайте