Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Колебания атомов в кристаллах электронов

    Под действием электромагнитного поля рентгеновских лучей электроны атомов, входящих в кристаллическую решетку вещества, начинают колебаться. Частота вынужденных колебаний электронов будет равна частоте электромагнитного поля первичного пучка рентгеновских лучей. Колеблющийся атом становится источником электромагнитных волн, распространяющихся от него во все стороны с частотой, равной частоте первичного луча. Расположение атомов в любой кристаллической решетке закономерно и расстояния между ними в данном направлении одинаковы, поэтому лучи, рассеянные отдельными атомами, будут интерферировать между собой. Интенсивность их в одних направлениях будет получаться значительно больше, чем в других. Следовательно, для рентгеновских лучей кристалл является трехмерной дифракционной решеткой, [c.111]


    Как мы знаем, все твердые вещества как кристаллического, так и непериодического строения имеют остов, вид и мерность которого определяют строение вещества. Атом представляет собой систему, состоящую из валентных электронов и атомного остова. Атомное ядро отклоняется от положения равновесия весьма незначительно и практически локализовано внутри атома, тогда как валентные электроны совершают колебания с амплитудой, равной междуатомным расстояниям. Поэтому по местонахождению ядер можно определить, какое положение занимают данные атомы в молекулах и кристаллах. Зная, что степень перекрывания волновых функций достигает максимума при сближении атомов на определенное расстояние (речь идет о средних межатомных расстояниях в твердом теле, которые могут быть найдены, например, рентгеноструктурным методом) и резко уменьшается на несколько большем расстоянии, можно точно установить, какие атомы связаны между собой химическими связями. Химические связи между атомами в формулах химических соединений принято обозначать черточками. Например, хотя в молекуле дело- [c.60]

    Связь между атомными слоями в графите осуществляется легкоподвижными электронами, которые свободно перемещаются между атомными слоями. Такая связь называется металлической, так как от нее зависят характерные свойства металлов. Это придает графиту металлический характер величины его электропроводности и теплопроводности того же порядка, что и у большинства металлов. Подвижные электроны переносят в нем заряд и передают тепловые колебания от атома к атому. Металлический цвет и блеск графита, а также малая его прозрачность обусловлены взаимодействием световых лучей с подвижными электронами. Пластинчатые кристаллы графита начинают просвечиваться при толщине 2 мк. В проходящем свете они серого цвета, показатель преломления равен 2,00 0,07. Подобно металлам, графит растворяется только в расплавленных металлах и образует амфотерные окиси, способные давать соли с кислотами и основаниями. [c.40]

    Вопрос о механизме миграции энергии пока еще слабо выяснен, может быть, за исключением, полупроводниковых тел. Мы точ Ьо не знаем, как мигрирует энергия по большим молекулам, в частности по макромолекулам белка, так же как не ясны формы ее миграции по металлическим поликристаллам. Здесь мы неизбежно вступаем в область лишь более или менее достоверных догадок. В порядке рабочей гипотезы можно думать, что миграция энергии происходит по экситонному. типу, т. е. путем эстафетной передачи зонно-электронного возбужденного состояния по кристаллу от одного активного центра к другому. Принять передачу энергии через колебания самой решетки труднее, так как они слишком легко рассеивал - бы энергию в окружающую среду. Примером электронной активации центра может служить возбуждение палладия, пере водящее его из структуры 4(8 р с1 °). с замкнутой 18-электронной оболочкой в структуру 5 с затратой энергии 0,8 эв (т. е. 18 ккал на атом) и с приобретением двух неспаренных электронов, т. е. двух химических валентностей в этом виде палладий обычно проявляет себя как элемент и как катализатор. [c.58]


    Атомы ванадия в решетке окиси ванадия имеют валентность, равную пяти. Когда в качестве примеси в решетку вводится атом вольфрама, появляется один избыточный электрон, так как вольфрам имеет шесть валентных электронов (случай а, рис. 2). Однако при введении атома вольфрама в решетку окисла ванадия шестой валентный электрон вольфрама, связанный со своим атомом но очень сильно, может при термических колебаниях мигрировать сквозь решетку окиси ванадия как переносчик электрического тока или влиять на адсорбцию кислорода на поверхности. Электронейтральность кристалла сохраняется вследствие того, что избыток положительного заряда атома вольфрама нейтрализует избыток электронов, имеюш ихся в кристалле. Однако электрон может мигрировать сквозь решетку и проводить электрический ток, в то время как положительный заряд дол кен оставаться локализованным в том месте решетки, в котором находится атом вольфрама. В результате вольфрам способствует электронной проводимости в твердом веществе. В противоположность этому, когда в решетке окиси ванадия атом ванадия замещен на титан (случай б рис. 2), он отдает только четыре валентных электрона. Пятый электрон, необходимый для валентной структуры кристалла, отдается одним из атомов ванадия, входящих в решетку окисла, что приводит к образованию так называемых положительных дырок в твердом веществе. В этом случае перенос электрического тока и электрическая проводимость возникают при движении этих положительных дырок. В обзорной литературе, указанной во вступительной части этого раздела, довольно подробно излагаются количественные законы, управляющие скоростью движения потока электрических зарядов, и энергетические факторы, управляющие их движением от одного положения в решетке к другому. Дефекты решетки, вызванные либо нестехио-метричностью состава, либо включением инородных примесей, несут ответственность за перенос электронов от твердого вещества к адсорбированной молекуле или, наоборот, за переход электронов из адсорбированной молекулы в решетку. Подобным же образом движение электронов или положительных дырок в твердом веществе имеет большое значение для каталитического поведения полупроводника кроме того, этим можно объяснить быстрое образование дефектов решетки при соударении адсорбирующейся молекулы с поверхностью. Признано также, что дефекты не локализуются в определенном месте решетки (как показано на рис. 1 и 2), а распространяются на довольно большое число атомов. Представления, излагаемые в настоящем разделе, очень упрощены, но будут полезны читателю как предварительная, чисто качественная картина, прежде чем он сможет получить сведения из более авторитетных обзоров (ссылки [4, 6 и 12]). [c.367]

    При очень низких температурах, которые стали доступными в настоящее время (см. примечание на стр. 111), составляющая теплоемкости Ср, обусловленная энергией колебания атомов и ионов, образующих кристаллическую рещетку, становится очень малой — большей частью не превышает 10 —10 кал/ град г-атом). В этих условиях в металлических кристаллах выявляется составляющая теплоемкости, обусловленная движением электронов. Эти две составляющие могут быть определены раздельно благодаря сильному различию их зависимости от температуры. Первая из них Ср, реш возрастает с повышением температуры прямо пропорционально третьей степени температуры, а вторая Ср,эц (кроме сверхпроводников в области сверхпроводимости) — пропорциональна первой степени ее. В соответствии с этим температурная зависимость суммарной теплоемкости может быть представлена в форме [c.154]

    Итак, мы имеем два канала, по которым идет процесс рассеяния мессбауэровских квантов в кристалле. Релеевское рассеяние на электронных оболочках атома — процесс, при котором время взаимодействия у-кванта с электроном Тд — 10 с, что намного меньше характерных значений периода колебаний атома в решетке кристалла Трещ— 10 с. Таким образом, за время, необходимое для поглощения и высвечивания у-кванта электроном, атом не успевает сместиться на сколько-нибудь заметную величину из того положения, в котором произошло поглощение фотона, и рассеяние у-квантов на электронных оболочках атомов представляет собой процесс, когда атомы находятся в некотором фиксированном неподвижном состоянии для каждого акта рассеяния. Таким образом, у-кванты падающий и рассеянный когерентны между собой, а импульс Й (к — к ) полностью передается всей решетке кристалла (здесь Йк и Йк — соответственно импульсы падающего и рассеянного у-квантов, а их векторная разность есть не что иное, как вектор Н обратного пространства). [c.229]

    Рассмотрение моделей кристаллов разного размера и соответствующие расчеты показывают, что частицы металла, на которых происходит прочная адсорбция азота, сопровождающаяся появлением активной в ИК-снектре полосы, имеют на поверхности наибольшее число так называемых В- цен-тров, т. е. центров, будучи адсорбированным на которых атом металла имел бы контакт с пятью соседними атомами металла. Это в свою очередь позволяет прийти к выводу о том, что, несмотря на относительно высокую теплоту адсорбции и отсутствие подвижности, молекулы азота не образуют с атомами металла химической связи, а удерживаются на поверхности дисперсионными силами и сильным электрическим полем Вд-центров, которое возникает в результате неполной компенсации электрических полей ядер и электронов атомов металла этих центров и поляризует адсорбированные молекулы (рис. 2). Дисперсионное взаимодействие молекул азота с В 5-центрами должно быть более сильным, чем с плоской поверхностью кристалла, так как адсорбированная молекула взаимодействует в этом случае с большим числом атомов металла. Хардевелд и Монтфорт [11] считают, что высокую интенсивность и значительное смещение полосы поглощения физически адсорбированных молекул относительно частоты колебания свободной молекулы азота можно объяснить сильной поляризацией адсорбированных молекул электрическим полем Вд-центров. [c.118]


    Соображения симметрии ценны не только для нахождения положения ато.мов и молекул в кристаллах, но также и для поиимания их колебаний и электронных состояний. Так, например, симметрия молекулярной электроиной орбитали должна соответствовать симметрии орбиталей связанных атомов. Здесь мы не будем дополнительно обсуждать этот вопрос, поскольку он уже обсуждался в гл. 17 (т. 1), а рассмотрим колебательные свойства молекул. [c.42]

    Область химической кинетики, посвященная взаимодействию между веществом и излучением, соответствующим переходам между различными энергетическими состояниями внешних электронов атомов и молекул, называется в классической химии фотохимией. Длины волн фотонов этих излучений лежат в пределах от ближней инфракрасной области для некоторых фотографических процессов (т. е. 10000 А) до дальней ультрафиолетовой области (порядка 1000 А), с которой приходится иметь дело при исследовании некоторых спектров поглощения, а также ионных кристаллов. Соответствующий интервал энергий составляет примерно от 1,2 до 12 eV. Происходящие при этом первичные процессы весьма просты, хотя их детальный механизм хорошо изучен лишь для немногих реакций. Молекула, поглощающая фотон, переходит в возбужденное состояние, после чего в течение известного промеж ггка времени могут происходить различные процессы, причем длительность этого промежутка имеет порядок одного периода колебания (10" сек.) или значительно больше. В зависимости от свойств молекул происходят те или иные процессы, которые отличаются друг от друга, в частности, своими скоростями. Такими процессами являются флуоресценция, простой распад, передача энергии другой молекуле или атому физическим или химическим путем (например, фотосенсибилизация), а также внутренние превращения, связанные с [c.55]

    С другой стороны, если примесь представляет собой трех-валентнын галлий, индий или золото, то возникает недостаток одного электрона на атом примеси. Образовавшееся вакантное место называется дыркой. Тепловые колебания электрона нормальной ковалентной связи могут случайно сблизить его с дыркой, так что он полностью уйдет с предыдущего места н рекомбинирует с ней. В результате такого процесса дырка перемещается вдоль решетки с одного места па другое. В легированном таким способом кристалле кремния дырки блуждают по Бсем кристаллу так же, как н избыточные электроны блуждают в кристалле, легированном мышьяком или сурьмой. Под- [c.552]

    На самом же деле дифракция рентгеновских лучей происходит на атомах. Рентгеновские лучи, пепадая на атом, приводят в колебания электроны атома. А так как всякое колебательное движение заряженной частицы сопровождается излучением электромагнитных волн во всех направлениях, с частотой, равной частоте колебания этой частицы, то происходит как бы рассеяние падающего на электрон излучения во все стороны, и интенсивность этих вторичных рентгеновских лучей, рассеянных электронами в силу законов интерференции в разных направлениях, оказывается разной. Дифракция рентгеновских лучей в кристалле является результатом когерентного, без изменения длины волны, рассеяния лучей электронами атомов кристаллической решетки. [c.68]

    Во-первых, если электронное влияние лигандов через центральный атом будет не особенно велико — порядка сотых долей см при характеристике влияния недиагональными силовыми постоянными,— то колебания каждого лнганда будут проявляться в спектре независимо от других лигандов. Результирующий наблюдаемый спектр образуется как аддитивная сумма спектров отдельных лигандов, расположенных вокруг центрального атома. Если эти лиганды одинаковы, то появится большое число случайно вырожденных частот. Это обстоятельство, в свою очередь, отразится на значениях интенсивностей результирующих полос поглощения, которые не будут подчиняться обычному для ИК-спектроскопии векторному правилу сложения векторов изменений дипольных моментов лигандов при колебаниях, а будут складываться алгебраически. Кроме того, это отразится и на поляризациях наблюдаемых колебаний, что необходимо принимать во внимание при поляризационных измерениях в кристаллах. [c.6]

    В последнее время выращивание больших монокристаллов из гидротермальных растворов, то есть гидротермальный синтез, широко применяется во многих странах, в первую очередь в СССР и Японии. Из гидротермального раствора можно при 400 °С и под давлением 2500 ат в течение нескольких дней вырастить весьма впечатляющий кристалл кварца-иногда до нескольких килограммов. В структуре таких кристаллов намного меньше дефектов, чем в природных, а их стоимость намного меньше. Благодаря экономичности производства кварц стали очень широко использовать в электронике и измерительной технике. Основу его быстрорастущего и самого разнообразного применения создает пьезоэлектрический эффект - относительно небольшое расширение или сжатие кристалла под действием внешних электрических полей. При наложении переменного напряжения в кристалле возбуждаются механические колебания с явно выраженным максимумом интенсивности, возникающим, когда частоты вынужденных колебаний войдут в резонанс с частотой собственных колебаний кристалла, то есть при совпадающих или кратных им частотах. Аккуратно написанные на шлифоваль-но-резальном станке кварцевые детали применяются сегодня миллионами в качестве нормализаторов частот в передатчиках и электронных фильтрах для измерительной техники, для кварцевых часов. С их помощью могут быть получены ультразвуковые колебания. Имеется и обратный эффект-появления электрического поля при деформировании кристалла он используется в различных датчиках давления. [c.72]


Смотреть страницы где упоминается термин Колебания атомов в кристаллах электронов: [c.618]    [c.71]    [c.445]    [c.182]    [c.118]    [c.132]    [c.263]    [c.5]    [c.93]    [c.324]   
Физическая химия Книга 2 (1962) -- [ c.115 , c.346 ]




ПОИСК





Смотрите так же термины и статьи:

Электрон в атомах



© 2025 chem21.info Реклама на сайте