Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Литий также Щелочные металлы

    Амилово-спиртовый и спирто-эфирный методы отличаются от методов, описанных выше, тем, что в них вместо магния осаждаются щелочные металлы. При отсутствии лития амилово-спиртовый метод может считаться вполне удовлетворительным. Он аналогичен методу Гуча для отделения лития от натрия и калия и требует тех же поправок на растворимость. Описание последнего метода см. в гл. Щелочные металлы (стр. 729). Спирто-эфирный метод является видоизменением метода отделения лития от щелочных металлов, также описанного в гл. Щелочные металлы (стр. 738). Если присутствует питий, он будет сопровождать магний. [c.717]


    Литий. Из щелочных металлов литий по отношению к кислороду и воде наименее активный. В отличие от гидратов окислов остальных щелочных металлов гидрат окиси лития ЫОН лишь умеренно растворим в воде и представляет, таким образом, переход к гидратам окислов щелочноземельных металлов. Соли лития по растворимости также скорее сходны с солями кальция, а не прочих щелочных металлов. [c.633]

    Известны также двойные ортофосфаты лития и аммония, лития и щелочных металлов. Эти соли, как правило, лучше растворимы в воде, чем средний фосфат лития [1061. [c.68]

    При других партнерах по реакции и условиях ее протекания ряд изменения химической активности простых веществ может быть иным. Так, из щелочных металлов по отношению к фтору (а также кислороду) наиболее активен литий  [c.237]

    Натрий, гидрид натрия, сплав калия и натрия, кальций и литий использовались также в качество катализаторов для гидрогенизации. Возмон ные преимущества натрпй-калиевого сплава заключаются в том, что ато жидкий катализатор и пе дезактивируется обычными ядами. Следует отметить, что этим методом могут быть подвергнуты гидрогенизации только то углеводороды, которые способны присоединять щелочные металлы [50а, 55, 56]. [c.261]

    Образование твердых растворов и соединений между твердым и жидким металлом происходит в результате протекания диффузионных процессов в твердой фазе — атомной и реактивной диффузии — и является весьма нежелательным явлением, так как образующийся слой твердого раствора или интерметаллического соединения обычно бывает хрупким, что снижает пластичность всего изделия. Возможны также частные случаи химического взаимодействия жидкометаллической среды с компонентами твердого металла взаимодействие щелочных металлов с растворенным в твердых металлах кислородом, лития — с углеродом, серой и [c.144]

    При установившемся равновесии обменного процесса поверхность ионита и раствор приобретают электрические заряды противоположного знака, на границе раздела ионит — раствор возникает двойной электрический слой, которому соответствует скачок потенциала. Поскольку иониты обладают повышенной избирательной способностью по отношению к определенному виду ионов, находящихся в растворе, ионообменные электроды называются также ионоселективными. Стеклянный электрод является важнейшим среди этой группы электродов. Он представляет собой тонкую мембрану из специального стекла, в котором повышено содержание щелочных составляющих — соединений натрия, лития и др. Согласно теории Б. П. Никольского потенциалопределяющий процесс на границе раствор — стекло заключается в обмене между ионами щелочного металла, например Ма+, содержащимися в стекле, и ионами Н+, находящимися в растворе  [c.484]


    Из щелочных металлов калий более эффективен как катализатор, чем ат рий литий имеет лишь ограниченное применение. В отличие от натрия, калий катализирует также некоторые реакции циклоалкилирования это открывает новый путь синтеза различных циклических соединений. [c.165]

    Главная подгруппа I группы периодической системы химических элементов Д. И. Менделеева, называемая также подгруппой щелочных металлов, включает литий Ы, натрий Ыа, калий К, рубидий КЬ, цезий Сз и франций Гг. Последний радиоактивен его единственный природный изотоп имеет период полураспада [c.142]

    Из таблицы видно, что di тройных МСС щелочного металла с аммиаком I ступени равно примерно 0,66 нм независимо от вида металла. Это относится также и к тройным МСС с литием. Следовательно, можно считать, что dj определяется, как правило, не диаметром атома металла, а диаметром сольватированного иона металла, который зависит от размера молекулы растворителя. Чем он больше, тем больше di. Степень сольватации может изменяться в зависимости от вида растворителя и используемого щелочного металла. [c.265]

    В практике атомно-абсорбционного анализа наибольшее применение получили два пламени воздушно-ацетиленовое и пламя оксида азота (I) с ацетиленом. Первый тип пламени успешно применяют для определения щелочных и щелочноземельных элементов, а также таких металлов, как хром, железо, кобальт, никель, магний, молибден, стронций, благородные металлы и др. Для некоторых металлов (хром, молибден, олово и др.) чувствительность определений может быть увеличена применением обогащенной смеси. К элементам, для определения которых практически бесполезно использовать воздушно-ацетиленовое пламя, относятся металлы с энергией связи металл — кислород выше 5 эВ (алюминий, тантал, титан, цирконий и др.). Пламя ацетилена с воздухом обладает высокой прозрачностью в области длин волн более 200 нм, слабой собственной эмиссией (особенно обедненное пламя) и обеспечивает высокую эффективность атомизации более чем 30-ти элементов. Частично ионизируются 0 нем только щелочные металлы (цезий 65%, рубидий 41 %, калий 30%, натрий 4 %, литий 1 %). [c.146]

    Электролизом расплавов в промышленности получают алюминий, магний, натрий, литий, кальций, титан и другие металлы, потенциалы выделения которых из водных растворов солей более отрицательны, чем потенциал выделения водорода. При электролизе водных растворов хлоридов щелочных металлов выделяются хлор, водород, а также получают каустическую соду. Водород и кислород высокой чистоты выделяются в результате электролиза водных растворов щелочей. [c.251]

    Приведенные в табл. 14.2 данные показывают, что в большинстве случаев свойства щелочных металлов закономерно изменяются при переходе от лития к цезию. В основе наблюдающихся закономерностей лежит возрастание массы и радиуса атома в подгруппе сверху вниз. Рост массы приводит к возрастанию плотности. Увеличение радиуса обусловливает ослабление сил притяжения между атомами, что объясняет снижение температур плавления и кипения и уменьшение энергии атомизации металлов, а также уменьшение энергии ионизации атомов при переходе от лития к цезию. Однако стандартные электродные потенциалы щелочных металлов изменяются в ряду Li — s не монотонно. Причина этого, подробно рассмотренная в разделе 11.3.2, заключается в том, что величины электродных потенциалов связаны с несколькими факторами, различно изменяющимися при переходе от одного элемента подгруппы к другому. [c.383]

    В реакции обмена ионами принимают участие также ионы щелочных металлов (лития, натрия, [c.341]

    Щелочные металлы обнаруживают, например, с помощью виолуровой кислоты или нитрата серебра, если они были разделены в форме хлоридов нитратов. Виолуровую кислоту используют в виде 0,1%-ного раствора после опрыскивания хроматограмму нагревают при 333 К. При этом пятна натрия и калия окрашиваются в фиолетовый цвет, пятна лития—в красно-фиолетовый. Этот реагент окрашивает также пятна других металлов. Обнаружение с помощью нитрата серебра носит косвенный характер, образующийся хлорид серебра темнеет на свету. [c.241]

    Из прямых методов определения коэффициентов активности чаще всего применяют метод измерения электродвижущих сил цепей без переноса. Таким путем определены коэффициенты активности HG1 во многих неводных растворителях и в их смесях с водой (см. Приложение 5), коэффициенты активности многих галогенидов щелочных металлов (см. Приложение 6). Коэффициенты активности хлористого лития в амиловом спирте определены, кроме того, на основании коэффициентов распределения. Криоскопический метод широко применялся для определения коэффициентов активности солей в формамиде и в других растворителях, использовался также и эбулиоскопический метод. Затруднения в применении этих методов в неводных растворах, особенно в растворителях с низкой диэлектрической проницаемостью, связаны обычно с трудностями в экстраполяции свойств, например электродвижущих сил, к бесконечно разбавленному состоянию. Это объ- [c.62]


    Короткий и длинный варианты периодической системы не разрешают также ряда частных вопросов, имеющих, однако, существенное значение. К таким вопросам относится, например, размещение водорода в периодической системе. Водород обычно помещают или в группу щелочных металлов над литием, или в группу галогенов над фтором. Так поступают, имея в виду, что водород может быть в своих соединениях в степени окисления как -f 1 (что характерно для щелочных металлов), так —1 (что характерно для галогенов). Однако этот мотив является чисто формальным, так как водород по своему химическому характеру и физико-химическим свойствам не сходен ни со щелочными металлами, ни с галогенами. Особенно противоречит принципу изме- [c.27]

    В связи с наличием в их структуре заполненных электронных орбиталей атомы и ионы парамагнетиков проявляют и диамагнитные свойства. Поскольку оба эффекта противоположны по знаку, суммарная магнитная восприимчивость вещества будет определяться наибольшим из них. Примерами веществ с ярко выраженными парамагнитными свойствами служат пары щелочных металлов, кислород и оксид азота N0 как в газообразном, так и в жидком состоянии, твердые литий, хром, палладий, а также ряд других металлов. [c.301]

    При ионизации радиус частицы резко уменьшается (в связи со снятием внешнего пз-слоя при этом процессе). Особенно резко радиус уменьшается у лития (более чем вдвое). У атомов остальных щелочных металлов уменьшение радиуса также значительно. [c.404]

    Полимеризация простых диенов (бутадиен, изопрен) может инициироваться радикалами или протекать по монному механизму. Полимеризация в растворителях в промышленности вытеснена эмульсионной радикальной полимеризацией. В качестве инициаторов, вызывающих образование свободных радикалов, применяются в первую очередь перекиси (в частности, персульфаты щелочных металлов), затем ароматические диазоэфиры, алифатические азосоедкиения и т. д. находят применение также щелочные металлы (литий, натрий, калий) и комплексные соли Циглера. [c.953]

    К)—щелочной металл. Здесь мы видим сходство с предыдущими периодами в каждом из них на первом месте стоял также щелочной металл (во втором периоде это был литий, а в третьем — натрий). Затем, однако, идет указанное выше отличие четвертого периЪда между элементами 4з и 4р-семейств вклиниваются 10 элементов З -семейства (2 = 21 30) со структурой (2 8 8) 3 ° 4з В данном (четвертом) периоде 10 переходных элементов начинаются со скандия (Яс 2 = 21) и кончаются цинком (Хп 2 = 30). Их электронные формулы и графическое изображение следующие. [c.46]

    Металлохимия. Металлы подгруппы калия между собой образуют непрерывные твердые растворы. Натрий не дает непрерывных твердых растворов с другими щелочными металлами и согласно этому металлохимическому критерию стоит ближе к литию. Для щелочных металлов наиболее характерно образование металлидов с S- и s/5-металлами, а также с элементами с полностью заполпеиными (л—1)(з -орбиталямп (металлы подгрупп. меди и цинка). Так как щелочные металлы не смешиваются с жидким алюминием, они с ним не образуют пи твердых растворов, ни металлидов. В то же время литий и натрий дают металлиды с галлием и индием. С переходными металлами с дефектной (п—1) -оболочкой щелочные металлы не взаимодействуют, а при высоких температурах наблюдается расслоение в широком диапазоне концентраций. Устойчивость Ti, V, Сг, Fe, Nb, Та, Zr к действию расплавленных щелочных металлов позволяет использовать последние в качестве теплоносителей в авиационных двигателях и в первичном контуре атомных реакторов. [c.118]

    Металлохимия. Метал,пы подгруппы калия между собой образуют непрерывные твердые растворы. Натрий не дает непрерывных твердых растворов с другими щелочными металлами и согласно этому металлохимическому критерию стоит ближе к литию. Для щелочных металлов наиболсзе характерно образование металлидов с V и sp-металлами, а также с элементами с полностью заполненными (п — 1) -орбиталями (металлы подгрупп меди и цинка). Так как щелочные металлы не смешиваются с жидким алюминием, они с ним не образуют ни твердых растворов, ни металлидов. В то же время литий и Есатрий дают мегалли-ды с галлием и индием. С переходными металлами с дефектной (п — 1) -оболочкой щелочные металлы не взаимодействуют, а при высоких температурах наблюдается расслоение в широком диапазоне концентраций. [c.310]

    Энергия ионизации свободного атома лития как щелочного металла мала. Это 03Hai4aeT, что наружный электрон в свободном атоме не испытывает сильного притяжения к ядру. Поскольку электрон слабо притягив-ается ядром одного атома, он также слабо притягивается двумя и тремя ядрами атомов в кристалле. Таким образом, энергия связей между электронами и ядрами в кристаллах щелочного металла довольно мала, в результате чего образуются относительно слабые металлические связи. Металлическая связь будет гораздо сильнее в тех элементах, которые имеют больше одного наружного электрона и более высокий заряд ядра. В этом случае в электронном газе находится больше электронов и каждый электрон связан с ядром более прочно- благодаря увеличенному его заряду. [c.205]

    Развиваемые выше представления о механизме стереорегулирования в процессах полимеризации диеновых углеводородов катализаторами на основе переходных металлов могут быть также использованы при рассмотрении реакций образования полидиенов в присутствии щелочных металлов или соответствующих им ме-таллорганических соединений, особенно соединений лития (табл. 8). [c.126]

    Щелочные металлы и их соединения широко используются технике. Литий применяется в ядерной энергетике. В частности, изотоп Li служит промышленным источником для производства трития, а изотоп Li используется как теплоноситель в урановых реакторах. Благодаря способности лития легко соединяться с водородом, азотом, кислородом, серой, ои применяется в металлургии для удаления следов этнх элементов из металлов и сплавов. LiF и Li l входят в состав флюсов, используемых при ]]лавке металлов и сварке магння и алюминия. Используется лтий и его соединения и в качестве топлива для ракет. Смазки, содержащие соединения лития, сохраняют свои с1юйства при температурах от —60 до - -150°С. Гидроксид лития входит в состав электролита щелочных аккумуляторов (см. 244), благодаря чему в 2—3 раза возрастает срок их службы. Применяется литий также в керамической, стекольной и других отраслях химической промышленности. Вообще, по значимости в современной технике этот металл является одним из важнейших редких элементов. [c.564]

    При добавлении в катализатор щелочных металлов регенерация катализатора в начальные моменты времени идет также более интенсивно по сравнени1<) с исходным образцом, а затем заметно замедляется. Наиболее значительное влияние на выжиг кокса оказывает введение лития. За первые 25 мин на образце, содержащем 1,32% (масс.) Li, сгорает 81% [c.33]

    При сг-ораиии при атмосферном давлении литий образует только оксид Ь1зО натрий дает пероксид натрия ЫзаОз, калий, рубидий и цезий образуют надпероксиды МО2. Пероксид натрия при повышении давления и температуры может дальше реагировать с кислородом, образуя ЫаОз. Для натрия и элементов подгруппы калия известны также озониды МО.,. С увеличением размера иона щелочного металла устойчивость надпероксидов и пероксидов повышается. [c.254]

    По многим физико-химическим свойствам литий обнаруживает большее сходство с магнием—элементом, находящимся в Периодической системе по диагонали от него, чем со своим непосредственным химическим аналогом — натрием. Так, литий при сгорании на воздухе образует оксид Li20, как и магний -MgO литий, в отличие от других щелочных металлов легко соединяется с азотом, давая нитрид LiaN, как и магний — Mga-Nj некоторые соли лития и магния — фториды, карбонаты, ортофосфаты, а также гидроксиды малорастворимы в воде гидроксиды лития и магния уже при умеренном нагревании (400—450 °С) разлагаются на соответствующий оксид и иоду, тогда как остальные щелочи в этих условиях термически устойчивы и образуют ионные расплавы. [c.196]


Смотреть страницы где упоминается термин Литий также Щелочные металлы: [c.639]    [c.224]    [c.238]    [c.953]    [c.604]    [c.201]    [c.525]    [c.134]    [c.587]    [c.200]    [c.123]    [c.326]    [c.124]    [c.228]   
Физическая химия Книга 2 (1962) -- [ c.111 , c.218 ]




ПОИСК





Смотрите так же термины и статьи:

Литые металлы



© 2025 chem21.info Реклама на сайте