Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Энергия давления, влияние на перенос

    На первом уровне рассматриваются процессы, протекающие в единичном структурном элементе — поре — с учетом ее реальных геометрических характеристик и их влияния на процессы переноса. Элемент характеризуется коэффициентами переноса, константами скорости химических реакций, адсорбции, энергиями активации, условиями возникновения межфазных границ и т. д., для него должны быть определены внешние условия — температура, давление, концентрации исходных веществ и продуктов и др. В средах с неоднородной пористой структурой, характеризующейся распределением пор по размерам, учитывается также влияние неравномерности распределения размеров пор на характер протекающих в них процессов. [c.141]


    Сделанные выше оценки влияния изменения плотности позволили при некоторых условиях упростить уравнения движения по сравнению с их общей формой, указанной в разд. 2.1. Во многих наиболее важных случаях течений, вызванных выталкивающей силой, возможны и дальнейшие упрощения. Они относятся к членам с давлением и вязкой диссипацией в уравнении (2.1.3), представляющем собой уравнение баланса энергии. Оценим величину каждого из этих членов в сравнении с другими членами уравнения (2.1.3), о которых известно, что они оказывают существенное влияние на перенос тепла в достаточно интенсивных течениях. Это — члены, описывающие конвективный перенос тепла ц перенос тепла теплопроводностью. Рассмотрим снова в качестве удобного примера стационарное ламинарное течение, подобное изображенному на рис. 2.2.1, хотя полученные результаты не ограничиваются этим случаем течения. [c.53]

    Общими уравнениями переноса при постоянных (х, fe и Z) в пренебрежении влиянием изменения давления и вязкой диссипацией энергии являются уравнения (2.7.19) —(2.7.22). Выписать их в скалярной форме для следующих случаев  [c.66]

    На стр. 157 приведен предел воспламенения смесей паров перекиси водорода и воды при атмосферном и уменьшенном давлении. На рис. 62 и 63 показано влияние изменения природы и концентрации присутствующего инертного газа на предел воспламенения при общем давлении 200 мм рт. ст. 118]. Замена части водяного пара гелием, азотом или кислородом не изменяет предела воспламенения двуокись углерода оказывает известный тормозящий эффект. Истолкование этих данных затруднительно, так как роль инертного газа может быть обусловлена его теплоемкостью, отражающейся на температуре адиабатической реакции, теплопроводностью, влияющей на скорость отвода тепла из реакционной зоны, действием его на скорость, с которой образовавшиеся в реакции свободные радикалы могут уходить путем молекулярной диффузии, или эффективностью этого газа в отношении переноса энергии ири тройных соударениях. Вероятно, наиболее существенное значение имеет теплоемкость. Адиабатическая температура реакции предельного воспламеняющегося состава для системы перекись водорода—вода составляет, например, 780" при общем давлении 1 ат и 880° при 200 мм рт. ст. эти значения 1Ч)раздо ниже встречающихся в большинстве систем из топлива и окислителя. [c.380]

    Возвращаясь к случаю совместного тепло- и массообмена, когда имеются две составляющие выталкивающей силы, рассмотрим вначале уравнения (6.3.3) — (6.3.5). Прежде всего пренебрежем членами с вязкой диссипацией, давлением, источником тепла и членом, учитывающим влияние стратификации, в уравнении энергии, а также членом, учитывающим влияние стратификации, и членом с источником компонента в уравнении переноса массы. Известно, что в случае только термической конвекции автомодельные решения получаются при [c.348]


    В отсутствие влияния поверхностного натяжения AG данного процесса равно изменению свободной энергии при переносе п молей вещества из паровой фазы с активностью или давлением Р в жидкую фазу, характеризующуюся активностью или давлением Р°, т. е. [c.298]

    Перенос газовых смесей через микропористые среды под влиянием градиента полного давления происходит диффузионным путем вследствие неравенства частот соударения отдельных молекулярных частиц со стенками пор. Из кинетической теории газов следует, что величины средней кинетической энергии компонентов газовой смеси в изотермических условиях равны. Следовательно, в пределах перегородки должно произойти отделение быстрой легкой молекулы г от соседней с ней медленной тяжелой молекулы /. Средняя арифметическая скорость молекул компонента I в максвелловском газе иг = 1/ 8№7лЖ,-. Аналогичную формулу можно написать для молекул компонента /. Тогда  [c.614]

    Изолированная система достигает равновесия в тот момент, когда уже отсутствует любая тенденция к самопроизвольным изменениям. Так как подобным изменениям сопутствует обмен энергией или массой между различными частями системы, состояние равновесия характеризуется неизменностью потенциала. Потенциалом переноса механической энергии является сила или давление, потенциалом теплопереноса — температура, потенциалом переноса массы при постоянных давлении и температуре — химический потенциал индивидуального компонента. Следовательно, во всех частях равновесной изолированной системы давление, температура и химический потенциал каждого компонента будут одинаковы. При наличии градиента любого из этих потенциалов имеет место тенденция к самопроизвольным изменениям состояния системы, что исключает установление равновесия. Влияние радиуса кривизны поверхности раздела между фазами, гравитации или других внешних полей здесь не рассматривается. Если давление во всей системе не одинаково (например, по высоте столба жидкости в гравитационном поле) для характеристики равновесного состояния можно воспользоваться методами, [c.170]

    ЦИИ. Подобный же вывод может быть сделан на основе данных Эллиса [143] но электропроводности при высоких давлениях. Оценка влияния давления на аномальную подвижность Н+ (отнесенную к подвижности и с учетом зависимости плотности и концентрации от давления) дает значение объема активации между —2,4 и —2,9 см -моль . Поскольку зависимость частотной дисперсии диэлектрической постоянной воды от давления не измерена, величина А]/ для процесса диэлектрической релаксации неизвестна. Можно предполагать, что в чистой жидкости объем активации будет полол<ителен, так как вращение будет вызывать некоторое ослабление связей и временное отталкивание соседних молекул. Однако в соответствии с рассматриваемым механизмом вращения, инициированного полем, электростатически выгодная ориентация молекулы НгО, находившейся в неблагоприятном положении, происходит с непрерывным уменьшением энергии (см. рис. 26). С учетом этих обстоятельств отрицательное значение АУ=>" вполне допустимо и соответствует увеличению электрострикции несвязанных молекул воды при образовании связи между ними и ионом НзО . Этот процесс будет сопровождаться отрицательным изменением объема. Непосредственная близость, атома кислорода может облегчить процесс переноса. [c.136]

    С потоками различной природы приходится встречаться очень часто. Реки представляют собой потоки, в которых масса переносится под действием разности гидростатических давлений теплообмен, вызванный разностью температур, приводит к потокам тепла от нагретой почвы в атмосферу, или от более теплой атмосферы к массе снега. Заряженные частицы, несущиеся от Солнца, образуют в околоземном пространстве сложные потоки, движение в которых происходит под действием электрических и магнитных сил бури и ураганы — это потоки воздуха, движущиеся под влиянием разности давлений и температур. Такого рода примеров можно привести множество. Во всех случаях можно обнаружить, во-первых, явные признаки необратимости процесса, во-вторых, наличие разности значений интенсивной величины и, в-третьих, перенос какой-либо экстенсивной величины или нескольких таких величин (например, массы и энергии). Более внимательный анализ покажет, что один поток часто вызывает другой так, что между потоками возникает непосредственная связь. Если, например, два металла привести в контакт и поддерживать металлы при различной температуре, то между ними появится поток теплоты, но вместе с тем обнаружится и появление разности потенциалов, т. е. возникнет поток иной природы. Если же создать разность потенциалов, т. е. осуществить перенос зарядов, то появится разность температур, воз- [c.20]

    Однако в действительных условиях испарение с поверхности происходит далеко не равномерно, и все испарившиеся молекулы не удается полностью сконденсировать. В среднем и низком вакууме часть молекул пара снова возвращается к поверхности испарения, в результате чего повышается давление в объеме аппарата и особенно у границ раздела фаз и тем самым снижается скорость сублимации. В этих условиях начинает усиливаться влияние конвективного переноса массы и энергии. Чем больше давление в сублиматоре, тем большая масса газообразного вещества участвует в движении от источника испарения к стенкам аппарата и нагревательным элементам (если таковые имеются) и от стенок аппарата к поверхности испарения. Принесенная таким образом энергия вызывает испарение с поверхности, и чем больше принесенная энергия, тем сильнее испарение. Вновь образовавшийся пар, встречаясь с потоком массы, идущим от стенок аппарата, создает у поверхности раздела фаз слой с максимальным давлением, который существенно снижает скорость испарения, способствуя возвращению на поверхность сублимации части испарившихся молекул. В этом случае происходит изменение коэффициента сублимации к от IV = 1 при высоком вакууме до /г - О при динамическом равновесии, когда отсутствует отвод образующегося пара из объема аппарата. [c.57]


    Однако в действительности испарение с поверхности происходит далеко не равномерно, и все испарившиеся молекулы не удается полностью сконденсировать. В среднем и низком вакууме часть молекул пара снова возвращается к поверхности испарения, в результате чего повышается давление в объеме аппарата и особенно у границ раздела фаз и тем самым снижается скорость сублимации. В этих условиях усиливается влияние конвективного переноса массы и энергии. Чем больше давление в сублиматоре, тем большая масса газообразного вещества участвует в движении от источника испарения к стенкам аппарата и нагревательным элементам (если таковые имеются) и от сте- [c.96]

    Диффузия низкомолекулярных веществ в полимеры рассматривается как движение вакансий, под которыми понимают перемещение структурных единиц, молекул и пачек под влиянием осмотического давления, капиллярного течения или за счет энергии сродства сорбата и сорбента. Поэтому перенос вещества Р и его сорбционная способность о являются функцией многих факторов. Определяющие из них — природа полимера Р, природа сорбата О и степень их химического сродства Н  [c.120]

    Деформация границы раздела фаз связана с целым рядом эффектов, из которых к наиболее существенным можно отнести следующие а) дробление капель или пузырей (ДР2) и связанное с этим изменение площади межфазной поверхности (ИПГРФ) (дуги 41, 42, 48) б) развитие межфазной турбулентности (МТУР), спонтанного эмульгирования (СПЭМ) и явления поверхностной эластичности (ПЭЛ) (дуги 43, 44, 45, 49, 50) в) изменение термодинамических характеристик в объеме включения (ИТХа) давления насыщения, температуры, состава степени отклонения от химического равновесия (Ай2) и т. п. (дуги 46, 47). Перечисленные эффекты, связанные с деформацией границы раздела фаз, интенсифицируют процессы межфазного переноса массы (ПМ1 2), энергии (ПЭ1 2) и импульса (ПИ1 2). Это влияние условно отображается обратной связью 51. При выделении эффектов третьего уровня иерархии ФХС предполагается, что межфазный перенос субстанций всех видов осуществляется в полубесконечную среду (т. е. отсутствуют эффекты стесненности). [c.29]

    Диффузия низкомолекулярных веществ в полимеры рассматривается как движение вакансий, под которыми понимают перемещение структурных единиц, молекул и пачек под влиянием осмотического давления, капиллярного течения или за счет энергии сродства сорбата и сорбента [36, с. 229 ]. Поэтому перенос И4 [c.114]

    Отсюда видно, что энергия переноса I/ есть отношение двух феноменологических коэффициентов (см. (19)) и оказывает влияние на коэффициент теплопроводности. Очевидно, что при отсутствии термомолекулярной разности давлений, т. е. когда АР = 0, коэффициенты выражений [c.46]

    Аэродинамический нагрев носовой части поверхности тела осуществляется, во-первых, путем ламинарной (молекулярной) теплопроводности, во-вторых, за счет диффузии диссоциированных частиц (атомов, электронов) к поверхности тела и сопутствующего переноса энергии диссоциации, выделяющейся при рекомбинации атомов в молекулы. Последний эффект особенно существен при наличии каталитической способности поверхности тела к рекомбинации. Как показывают прикидочные расчеты и количественные оценки эффектов, по-видимому, при учете влияния диффузии можно пренебрегать явлениями термо- и бародиффузии, во всяком случае, в тех пределах изменения температур и давлений, о которых пойдет речь впереди. [c.458]

    Влияния типа входа и свойств жидкости (вязкость и поверхностное натяжение) были исследованы Даклером и др. [19, 26] в горизонтальном аппарате (диаметр труб 25 и 75 мм) при комнатной температуре и атмосферном давлении. Градиент давления найден более высоким при всех прочих равных условиях, если газ входил со стороны Т-образного смесителя. В этом случае (см. разд. И. Б. 4, б) захват жидкости ядром потока был меньшим. Автор предположил, что большая доля энергии тратится на перенос жидкости в пленке, двигаюш,ейся по стенке, а не в ядре в виде маленьких капелек. Изменение вязкости жидкости от 1 до 17 СПЗ приводило к небольшому, но измеримому изменению перепада давления. Влияние этого параметра на сопротивление оказывается незначительным и зависит от величины весового расхода жидкости. С другой стороны, влияние поверхностного натяжения было найдено незначительным. Перепад давления из-за ускорения (или расширения), согласно уравнению количества движения, был более чем на 50% выше общ,его перепада давления, и авторы предположили, что большинство расхождений в результатах различных авторов может происходить из-за разного влияния этого члена, не всегда принимаемого в расчет. [c.214]

    В тепло-массообменных процессах внешние воздействия должны быть связаны с ускорением переноса энергии и массы. Из физической сущности тепло-массопереноса следует, что интенсификация может идти по пути создания больших градиентов скорости и давления по времени, влияния на конвективный перенос и непосредственно на коэффициенты переноса, а также по пути управления распределением источников воздействия. Когда создание больших градиентов лимитировано свойствами перерабатываемых веществ или технологическими условиями, перспективно физическое воздействие через конвективный тепло-марсоперенос. Существенный вклад может дать управляемое пространственно-временное распределение внутренних источников тепла, генерируемых различными полями или частицами. Наконец, существует возможность влияния непосредственно на коэффициенты переноса, например, утончение пограничных слоев под воздействием колебаний и т.п. [c.6]

    Методы расчета. Количеств, описание процессов X. т.ос-новано на законах хим. термодинамики, переноса кол-ва движения, теплоты и массы (см. Макрокинетика, Переноса процессы. Турбулентная диффузия) и хим. кинетики. Анализ кинетич. закономерностей единичных процессов, их взаимного влияния позволяет разработать технол. режим, т. е. огттимальную совокупность параметров (т-ра, давление, состав исходной реакционной смеси, природа катализатора), определяющих такие условия работы апп ата или системы аппаратов, к-рые позволяют получить наиб, выход продукта или обеспечить наименьшую его себестоимость. Мат. моделирование, широко используемое при расчетах хим. процессов и оборудования, включает формализацию процесса в виде мат. записи, задание разл. значений режимных параметров системы для отыскания с помощью ЭВМ значения выходных параметров и эксперим. установление адекватности модели изучаемому объекту. Оптимизация работы афегатов осуществляется по экономич. и энерго-технол. показателям. Если прежде при этом стремились достичь макс. результата по одному параметру, напр, получить макс. выход продукта, то теперь требуется оптимизация, включающая учет таких параметров, как энергетич. и материальные ресурсы, защита окружающей среды, обеспечение заданного качества продуктов, безопасность процессов, продуктов и отходов произ-ва. [c.238]

    В уравнения неразрывности и энергии многокомпонентной смеси входят потоки Ji относительно среднемассовой скорости, поэтому к этим уравнениям нужно добавить определяющие уравнения, связывающие с движущими силами, под действием которых происходит перенос массы компонент. В п. 1.4 показано, что такими движущими силами являются градиенты концентраций и внешнее электрическое поле. Влияние электрического поля рассматривается в следующем разделе. Возможен также поток за счет градиента давления (бародиффузия), однако он обычно мал, за исключением случаев больших градиентов давления, например в процессах центрифугирования. Наконец, возможен поток за счет градиента температуры (эффект Соре). Подробное обсуждение 3Tiix эффектов и оценка их вклада в перенос массы содержится в работах [1, 2]. Ограничимся рассмотрением обычной диффузии. [c.62]

    Электродные процессы всегда протекают на границе фаз. Особенностью этих реакций является то, что они зависят еще от одной интенсивной переменной — потенциала или поля,— влияющей нз свободную энергию а) адсорбции реагентов, б) адсорбции промежуточных частиц и в) активации реакции. Что касается последнего, то роль потенциала аналогична роли давления, например в изменении скоростей реакций в конденсированных фазах. На протекание электродных реакций оказывают влияние также специфические поверхностные свойства металлов, такие, как работа выхода электрона, поверхностная концентрация дефектов, энергия адсорбции промежуточных и исходных частиц, и именно в этом отношении можно говорить о предмете электрокатализа. Аналогично тому как скорость реакции обмена Нз — Вг меняется в весьма широких пределах при катализе на различных металлах и окислах, кинетическая степень электрохимической обратимости, например в случае реакции выделения водорода при обратимом потенциале, изменяется более чем на одиннадцать порядков при переходе от активной платины к гладкому свинцу. Позднее электрокатализом стали называть реакции электрохимического окисления органических соединений, протекающие через стадию диссоциативной хемосорбции на электроде, в которых специфические эффекты каталитической диссоциации тесно связаны с электрохимическими процессами переноса заряда. Однако подобное толкование термина электрокатализ не является новым по существу, аналогичные стадии каталитической диссоциации и электрохимической ионизации имеют место в реакции водородного электрода, исследовавшейся с подобной точки зрения Фрумкиным и его сотрудниками начиная с 1935 г. Таким образом, большое значение в электрокатализе имеет электрохимическое поведение промежуточных частиц, возникающих либо в стадиях перехода заряда, либо в результате диссоциативной хемосорбции, предшествующей или сопутствующей стадии перехода заряда. Большое количество рассматриваемых работ было посвящено исследованию реакций выделения и растворения водорода и кислорода, а в последнее время — реакций окисления органических соединений. [c.392]

    Явления переноса в пленках. Возрастание тормозящего влияния в пленках приводит в стационарном состоянии к появлению некоторого предела, когда скорость реакции определяется исключительно диффузией в чистом жидком веществе температурный коэффициент этого процесса соответствует величине энергии активации около 2 ккал1моль. Кинетика реакции подчиняется уравнению первого порядка по отношению к концентрациям при постоянном общем давлении или же уравнению нулевого порядка по отношению к общему давлению при постоянном составе и линейной скорости [10]. Воздействие диффузионных факторов приводит к энергии активации с величиной, промежуточной между 2 ккал1моль и истинной энергией активации. Поэтому вызывают сомнение данные, указывающие на малую величину энергии активации системы, особенно если реакция эндотермнчна и соответствующая энергия активации меньше теплоты реакции [11]. Отметим, однако, что этот критерий сам по себе является еще недостаточным. [c.753]

    Интересная гипотеза выдвинута Прохоровым и Трамером [249]. Наряду с диэлектрическим сдвигом не меньшее влияние на спектр переноса заряда может оказывать эффект клетки . Межмолекулярные силы стремятся уменьшить объем, занимаемый растворенными молекулами комплекса. В слабых комплексах ДА-связь легко деформируема, поэтому внутреннее давление может вызвать заметное уменьшение расстояния между компонентами комплекса и вследствие этого изменение энергии перехода. Уменьшение межмолекулярного расстояния должно способствовать лучшему перекрыванию орбита-лей донора и акцептора. Значит, прочность комплекса и, следовательно, интенсивность ППЗ в растворе должны быть выше, чем в газовой фазе. Действительно, как видно из табл. III.5, интенсивность ППЗ в газовой фазе меньше, чем в растворе. Особенно велика разница для слабых комплексов. В гл. IV рассмотрены некоторые другие причины, которые могут вызывать завышение величин слабых комплексов в растворе. Влияние растворителя на е должно уменьшаться по мере увеличения прочности и полярности комплексов [10, 158]. [c.107]

    Принимая, что коэффициент диффузии в кристаллитах для бутена-1 мало изменяется, надо думать, что увеличение параметра DJr связано с уменьшением размера кристаллитов при повышении давления прессования. С другой стороны, сильное уменьшение динамической емкости адсорбции бутена-1 с повышением давления прессования указывает на образование недоступных для бутена-1 агломератов кристаллитов. Динамическая емкость для транс-бутена-2 не зависит столь же сильно от давления прессования по-видимому, эти агломераты доступны для пгракс-бутена-2. Агломераты образуют дополнительное сопротивление, и перенос транс-бутена-2 при повышении давления прессования осуществляется по промежуточному механизму, по которому сопротивление в порах агломератов все более и более влияет на общую скорость адсорбции. Это влияние вызывает уменьшение энергии активации диффузии для гракс-бутена-2 с повышением давления прессования. [c.137]


Смотреть страницы где упоминается термин Энергия давления, влияние на перенос: [c.267]    [c.396]    [c.396]    [c.283]    [c.97]    [c.473]    [c.322]    [c.283]    [c.62]    [c.197]    [c.197]   
Свободноконвективные течения, тепло- и массообмен Кн.2 (1991) -- [ c.100 , c.101 ]

Свободноконвективные течения тепло- и массообмен Т2 (1991) -- [ c.100 , c.101 ]




ПОИСК







© 2025 chem21.info Реклама на сайте