Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Энергия Изменение при переходе

    Физический смысл (2.70) ясен — скорость реакции в общем случае определяется не только теплотой активации, но и изменением свободной энергии при переходе в активированное состояние, причем эти факторы противоположны по своему действию. Если переход в активированное состояние ведет к сильному увеличению энтропии, то реакция будет идти с большой скоростью несмотря на высокие значения энергии активации. И напротив, если возрастание энтропии невелико, то даже при низких значениях ДН (или ди) реакция будет протекать медленно. Поскольку величина ДН (или Ди) связана с энергией активации, то величину ДЗ формально можно связать со стерическим фактором из (2.20). По этой причине стерический фактор иногда называют энтропийным множителем. [c.78]


    Наибольшую величину имеют энергии электронных переходов (1—100 эВ) изменение энергии электронов находит свое выражение [c.143]

    Здесь X — трансмиссионный коэффициент, обычно принимаемый равным единице (за исключением некоторых специальных случаев) — стандартная свободная энергия активации (характеризующая изменение свободной энергии системы в стандартных условиях при переходе ее из исходного состояния в активированное), и стандартная энтропия и стандартная энтальпия активации, кв — постоянная Больцмана (1,38-10 эрг/град) и к — постоянная Планка (6,625-эрг-сек). Из уравнения (4.3) видно, что константа скорости реакции определяется главным образом изменением свободной энергии при переходе системы в активированное состояние, так что любой внешний фактор, уменьшающий свободную энергию активации, будет способствовать ускорению химического процесса. [c.66]

    Любой фазовый переход, происходящий при постоянных температуре и давлении, сопровождается изменением энергии системы. Энергия фазового перехода системы из твердого состояния в жидкое и наоборот называется теплотой плавления АЯ, энергия фазового перехода из парообразного состояния в твердое — теплотой сублимации ДЯ .. Термин теплота в данном случае не совсем правильно отражает существо происходящих явлений, так как изменения энергии могут быть результатом изменений условий системы, которые происходят без подвода или отвода тепла к системе. [c.107]

    Внутренней энергией системы называется сумма потенциальной энергии взаимодействия всех частиц тела между собой и кинетической энергии их движения, т. е. внутренняя энергия системы складывается из энергии поступательного и вращательного движения молекул, энергии внутримолекулярного колебательного движения атомов и атомных групп, составляющих молекулы, энергии вращения электронов в атомах, энергии, заключающейся в ядрах атомов, энергии межмолекулярного взаимодействия и других видов энергии. Внутренняя энергия — это общий запас энергии системы за вычетом кинетической энергии системы в целом и ее потенциальной энергии положения. Абсолютная величина внутренней энергии тела неизвестна, но для применения химической термодинамики к изучению химических явлений важно знать только изменение внутренней энергии при переходе системы из одного состояния в другое. [c.85]


    Так как масса электрона очень мала, он не может при соударении с молекулой передать ей свою кинетическую энергию и повысить ее вращательную или колебательную энергию. Для перехода кинетической энергии поступательного движения электрона в колебательную энергию молекулы наиболее выгоден удар вдоль оси молекулы. Но вследствие невыгодного соотношения масс даже при таком ударе молекуле может быть передана, как уже было показано выше, лишь небольшая доля кинетической энергии электрона. Несмотря на это, при некоторых обстоятельствах переход кинетической энергии поступательного движения электрона в колебательную энергию молекулы, с которой он сталкивается, оказывается возможным. Электрон своим электрическим полем может так изменить внутреннее поле молекулы, что произойдет изменение ее колебательного состояния. Опыт показал, что электроны, обладающие энергией 5 эв, возбуждают колебательные кванты молекул азота и окиси углерода. причем вращательное движение молекул не изменяется. [c.73]

    Как известно из термодинамики, константа равновесня связана со свободной энергией процесса. Эту связь можно использовать и для нахождения величины Л , вводя понятие свободная энергия активации, характеризующее изменение свободной энергии при переходе системы из исходного состояния в переходное и учитывающей все степени свободы, кроме координаты реакции. Если вещества находятся в стандартном состоянии, то для процесса, протекающего при постоянном объеме [c.148]

    I. Законы фотохимии. В фотохимии рассматриваются закономерности влияния электромагнитных колебаний видимого и ультрафиолетового участков спектра на реакционную способность химических систем. Общая реакционная способность химической системы характеризуется значениями стандартного сродства реакций АО (Т) и стандартного сродства в процессе образования переходного состояния Значения А0 (7 ) и АС (7) изменяются с изменением температуры. При повышении температуры в системе изменяется кинетическая энергия поступательного и вращательного движения молекул и энергия колебательного движения ядер атомов. В области средних температур энергия движения электронов при изменении температуры практически остается постоянной. Чтобы перевести электроны на более высокие электронные энергетические уровни, надо нагреть систему до высоких температур, при которых многие реагенты разлагаются. При воздействии на химическую систему электромагнитными колебаниями с частотой видимого и ультрафиолетового участков спектра изменяется энергия движения электронов. Поглощая квант энергии, электроны переходят с ВЗМО на НО Ю. Образуется возбужденная молекула, обладающая избыточной энергией. Распределение электронной плотности в возбужденных молекулах существенно отличается от распределения электронной плотности в исходных молекулах. Повышается энергия колебательного движения ядер. Физические и химические свойства возбужденных молекул отличаются от свойств молекул в невозбужденном состоянии. Появляется возможность получения новых веществ, синтез которых невозможен при термическом воздействии на систему. [c.610]

    Хотя величина с и названа константой, нет ни одной изотермы адсорбции паров, для которой величина с действительно постоянна во всем интервале давлений паров адсорбата от Р = О до Р = Pq, т. е. до насыщенного пара. Однако, для большинства изотерм адсорбции паров имеется участок, где с постоянно. Так, большая часть изотерм типа II подчиняется уравнению (VI. 17) при P/Pq = = 0,05—0,35, т. е. когда 0 изменяется приблизительно от 0,5 до 1,5 [37, 38]. Статистические и термодинамические выводы уравнения БЭТ показывают, что значение с зависит от изменения свободной энергии при переходе пара, находящегося в равновесии с жидкостью, на поверхность адсорбента величина с определяет вид изотермы адсорбции. Если с > 2, то получаются S-образные изотермы II типа если с 2, то — изотермы III типа [38, 44]. Параметр с в первом приближении определяется выражением [45] [c.294]

    Если мы теперь посмотрим на стрелки, показывающие изменение электронного спина, то увидим, что энергии двух переходов уже не равны. Один переход приводит к тому, что спектральная линия смещается на величину /2 в область более низкой энергии, чем та, которая соответствует д = 2.0023 (см. рис. 9.2,Г), а другая линия характеризуется более высокой (на /2 а) энергией. Расстояние между этими двумя линиями равно а. .... [c.12]

    Из рис. 9.2,Д, где продемонстрировано влияние этих недиагональных элементов на энергетические уровни, видно, что энергии обоих переходов возрастают на одну и ту же величину. Поскольку недиагональные элементы малы по сравнению с диагональными, эффекты, обусловленные этим членом гамильтониана, называются эффектами второго порядка. Таким образом, эффекты второго порядка не влияют на величину а, которую отсчитывают на спектре, но оказывают влияние на регистрируемую величину д. Более интересно то, что теперь из-за смешивания функций базиса первоначально запрещенный спектральный переход 3 -> , (одновременное изменение положения электронного и ядерного спинов) становится разрешенным.  [c.15]


    При изменении энергии колебательного движения молекул изменяется также и энергия их вращательного движения. Примем, что энергия вращательного движения молекул остается неизменной. Тогда прн поглощении энергии молекула переходит с колебательного квантового уровня, характеризуемого квантовым числом и, на более высокий энергетический уровень с квантовым числом v, причем поглощается энергия [c.69]

Рис. 15.3. Изменение энергий МБ-переходов для различных величин Рис. 15.3. <a href="/info/12494">Изменение энергий</a> МБ-переходов для различных величин
    Простая и наглядная трактовка физической сущности распределения вещества между двумя жидкими фазами может быть дана на основе представлений Уорда и Брукса [15] об энергетической стороне межфазного обмена. Эпюра изменения свободной энергии при переходе одного из компонентов раствора через поверхность раздела фаз изображена схематически на рис. 5.2. При переходе вещества из одной фазы в другую должен быть преодолен барьер [c.85]

Рис. 1-26. Изменения свободной энергии при переходе через поверхность контакта двух жидких фаз Рис. 1-26. <a href="/info/12282">Изменения свободной энергии</a> при <a href="/info/222572">переходе через</a> <a href="/info/30020">поверхность контакта</a> <a href="/info/1696521">двух</a> жидких фаз
    Наименьшее значение имеет энергия вращательных переходов в молекулах ей соответствует излучение, лежащее, в дальней инфракрасной области. Вращательные спектры можно наблюдать п чистом виде без наложения на них изменений в других видах движения — колебательных н электронных переходов. [c.65]

    Зависимость (212.2) может быть представлена графически в трехмерном пространстве или в виде изоэнергетических линий в двухмерной системе координат п и гг. Расчет энергии такой системы, состоящей из 3 ядер и 3 электронов, был сделан методом МО ССП с расширенным базисом. На рис. 188 приведены результаты одного из таких расчетов. Изоэнергетические линии системы вычерчены при изменении п и гг. Диаграмма подобна топографической карте. Рассмотрим, как будет изменяться внутренняя энергия при столкновении молекулы АВ с атомом С. Внутренняя энергия исходного состояния молекулы АВ (На) принята равной —440 кДж/моль, энергия атома С (атома Н) — равной нулю. Пусть кинетическая энергия поступательного движения молекулы АВ и атома С по линии, соединяющей центры атомов, будет равна (,. Примем за исходное состояние системы состояние, обозначенное на рис. 188 точкой 1. В этом состоянии атом С находится на расстоянии г% =2 10 м. Энергия межмолекулярного взаимодействия между АВ и С невелика, поэтому внутреннюю энергию системы можно принять равной энергии исходного состояния. При приближении атома С к молекуле АВ преодолеваются силы отталкивания между одноименно заряженными ядрами атомов В и С. Внутренняя энергия системы при этом возрастает. Точка, характеризующая состояние системы, будет двигаться по линии минимальных энергетических градиентов, изображенной на рис. 188 пунктиром. В интервале между точками 2 ж 4 система находится на перевале, разъединяющем исходное и конечное состояния. На вершине энергетического барьера, в точке <3, при г = гг, атомы А и С энергетически тождественны. Система находится в переходном состоянии (см. 210). Однако в состоянии атомов А и С есть существенное различие. Атом С продолжает движение по направлению к атому В за счет кинетической энергии поступательного движения, а атом А совершает колебательное движение относительно атома В. На вершине потенциального барьера возникает взаимодействие в форме притяжения между атомом С и молекулой АВ, обусловленное обменным взаимодействием энергетических уровней молекулы АВ и атома С. В точке 4 система находится в состоянии мо-кулы ВС и атома А. На пути от точки 4 к точке 5 энергия отталкивания переходит в энергию поступательного движения молекулы ВС и атома А. Внутренняя энергия системы уменьшается до энергии конечного состояния (молекулы ВС и атома А), равной —440 кДж/моль. [c.570]

    При переходе из области крупного измельчения в область тонкого частицы однородных материалов сохраняют свой технологический состав и основные физико-механические свойства. Вывод о том, что с уменьшением размера частиц растет их прочность, к этим материалам неприменим. При измельчении неоднородных материалов, т. е. материалов, состоящих из склеенных или спаянных частиц разных веществ, с уменьшением размера частиц их физико-механические свойства изменяются. Это изменение может идти как в сторону повышения, так и в сторону понижения прочностных свойств материала частиц, что еще не означает увеличения удельного расхода энергии при переходе в область тонкого измельчения. [c.34]

    Разбухание молекулярных клубков в растворителе обусловливается изменением свободной энергии конформационных переходов и описывается уравнением Флори [c.108]

    Всеми этими термодинамическими уравнениями очень удобно пользоваться при рассмотрении взаимосвязей, существующих между углеводородами если известны величины свободных энергий отдельных углеводородов, то изменение свободной энергии при переходе от одного углеводорода к другому получается сразу простым алгебраическим суммированием уравнений свободных энергий образования этих углеводородов. Зная изменение свободной энергии и подставляя эту величину в уравнение (1), получаем значение константы равновесия. [c.16]

    При изменении поперечного сечения трубопровода и соответствеино скорости движения жидкости происходит превращение энергии при сужении трубопровода часть потенциальной энергии давления переходит в кинетическую и, наоборот, при расширении трубопровода часть кинетической энергии переходит в потенциальную, но общее количество энергии остается постоянным. Отсюда следует, что для идеальной жидкости количество энергии, поступающей с потоком через начальное сечение трубопровода, равно количеству энергии, удаляющейся с потоком через конечное сечение трубопровода. [c.56]

    В последние годы широкую известность завоевал метод полного наложения конфигураций в пространстве активных орбиталей. В методе наложения конфигураций и в методе МК ССП некоторая часть конфигураций может быть отобрана из простых соображений. При переходе от легких атомов к более тяжелым, например атомы переходных элементов, возникает вопрос об участии -электронов в химической связи. Для этих элементов характерно относительно небольшое изменение полной энергии при переходе от конфигурации основного состояния к возбужденной и в этих условиях возможна сложная схема изменения весов различных конфигураций при разрыве химической связи. Явный учет даже относительно небольшого числа валентных электронов и возможных схем их расселения приводит к внушительному списку конфигурационных функций. Например, если расселить 8 электронов на восьми 262 [c.262]

    Если и > то механическая работа электромагнитной сплы превосходит изменение полного запаса энергии газа, т. е. механическая энергия частично переходит в энергию электромагнитного поля в виде тока, который может совершать работу во внешней цепи МГД-генератора. Если и < И д, то энергия электромагнитного поля передается газу в виде механической работы или тепла (насос или ускоритель). [c.242]

    Для наглядности на рис. 2 приведены примеры переходов между различными уровнями энергии. Изменение энергии молекулы сопровождается изменением как энергии электронов, так и энергии колебаний и вращений, т. е. у молекулы не может быть чисто электронных переходов, а возможны только электронно - колебательно - вращательные (ЭКВ) переходы. Очевидно, что число возможных ЭКВ переходов у молекулы [c.6]

    В дальней инфракрасной или даже в области радиочастот. Энергии колебательных переходов (10 —10 эв) соответствует излучение (поглощение) в ближней инфракрасной области. Изменение энергии [c.174]

    По современным представлениям, гибкость макромолекул связана с изменением взаимного расположения смежных атомов цепи или звеньев. При этом звенья обладают набором устойчивых конформаций (поворотных изомеров), соответствующих минимумам потенциальной энергии. Изменение конформаций макромолекул происходит путем перехода звена от одних минимумов к другим через потенциальные барьеры. Чем выше потенциальный барьер, тем реже происходит переход от одного поворотного изомера к другому. При этом среднее время т, характеризующее процесс перехода от одной равновесной конформации к другой, тем больше, чем выше потенциальный барьер 11, и тем меньше, чем больше интенсивность теплового движения, характеризуемая величиной кТ (где k — постоянная Больцмана, Т — температура). Согласно статистике Больцмана, т = С ехр [ //(йГ)] (здесь С — постоянная, равная кон-формационному времени в условиях, когда U = 0 или Г- оо). [c.17]

    Что такое активированное состояние, будет пояснено несколько позднее. Однако первое представление об активированном состоянии можно дать уже здесь, обратясь к рис. Б.З. Исходному состоянию молекулы соответствует энтальпия а конечному состоянию — энтальпия Яг Н1>Н ). В процессе реакции исходные вещества с уровня энергии Н переходят в конечные с уровнем энергии Яа, при этом происходит изменение энтальпии АЯ (разд. 20.1). Для того чтобы могла произойти реакция, необходимо, чтобы во время соударения взаимодействую- [c.169]

    При когерентном рассеянии света молекулами, описываемом законом Рэлея (см. уравнение (467)), часть энергии излучения переходит в энергии вращательного и колебательного состояния молекул. Поэтому в спектре рассеянного света наряду с частотой линии возбуждающего света наблюдаются линии с большими и меньшими частотами, соответствующие выделению и поглощению энергии молекулами. Поскольку при комнатной температуре преобладает основное колебательное состояние, происходит только поглощение энергии. Линии получаемого таким образол спектра комбинационного рассеяния (КР) часто значительно сдвинуты по сравнению с линиями падающего на вещество света в сторону больших длин волн. В то время как ИК-спектр связан с изменением дипольного момента молекул, появление линий в КР-спектре связано с изменением поляризуемости молекул. Поэтому линии спектра [c.354]

    Изменение энергии при переходе атома в междуузлие в значительной степени зависит от строения кристаллической решетки и от свойств этого атома. При высокой энергии перехода иона в междуузлие дефекты по Френкелю не образуются в заметных количествах. Если в решетке имеются крупные пустоты-междуузлия, то энергия образования таких дефектов ниже и они встречаются чаще. Кроме того, дефекты по Френкелю часто обнаруживаются у кристаллов, ионы которых имеют сильную поляризуемость, и редко наблюдаются у оксидов и ковалентных веществ. [c.168]

    Согласно принятой модели, в мицеллярном растворе Сщ= = ККМ. Таким образом, изменение стандартной свободной энергии при переходе молекул ПАВ в мицеллярное состояние (в расчете на 1 моль) определяется выражением  [c.49]

    Изменение энергии ядерного перехода, т. е. энергии поглощаемого образцом у-кванта по сравнению с испускаемым  [c.118]

    Энергия колебательных переходов приблизительно в 10 раз больше энергии вращательных переходов соответствующее им излучение лежит в ближней инфракрасной области. Изменения в колебатель[Юм движении молекулы всегда сопровождаются изме-иенпямн во вращении, поэтому колебательный спектр в отличие ог враи ательиого не может наблюдаться в чистом виде эти спектры всегда накладываются друг на друга, образуя колебательно-вращательный спектр. [c.65]

    Таким образом, реакция называется экзо(эндо)эргической, если изменение энергии при переходе от основного состояния реагентов к основному состоянию продуктов положительно (отрицательно). Для любой из таких реакций возможно осуществление экзо(или эндо)термич( Ского режима в зависимости от того, ноложитсльпа или отрицательна выделяемая в реакции теплота, т. е. положительна или отрицательна разность энергий заданных состояний реагентов и продуктов. Естественно, что если внутренние состоя- [c.42]

    Выше 1) было указано, что величина внутренней энергии, а следовательно, и энтальпии определенной массы данного вещества зависит от его агрегатного состояния и температуры. Последовательность агрегатных превращений с изменением температуры показывает, что вешества обладают наибольшим запасом внутренней энергии, я следовательно, и наибольшей энтальпией в газообразном состоянии. В жидком состоянии этот запас меньше, а в твердом (кристаллическом) —еще меньше. Отсюда ясно, что фазовые переходы должны сопровождаться энергетическими эффектами выделением энергии при переходе вен1естБ из состояния с большей энтальпией в состояние с меньшей энтальпией и поглощением зисргии при обратном переходе. Таким обра юм, сжижение газа и кристаллизация жидкости — процессы экзотермические, а плав 1еиие кристаллов и испарение жидкостей —. эндотермические. [c.81]

    Целочисленный вклад в общую мерность, связанный с тепловой энергаей От Ш7, обеспечивает преимущественно разнообразные структурнью фазовые переходы с магнитной энергией - изменения преимущественно магнитных свойств вещества (образование и исчезновение магнитных доменов, точка Не-еля), с электрической энергией Вэ., - измененяя преимущеспвенно электрических свойств вещества (точка Кюри). [c.136]

    Докажем, что внутренняя энергия является функцией состояния. Пусть при переходе системы из первого состояния во второе по одному пути изменение внутренней энергии равно ДУд, а по другому пути — А[Ув, т. е. предположим вначале, что изменение внутренней энергии зависит от пути процесса. Если величины АС/а н А Ув различны, то, изолируя систему и перёходя из состояния / в состояние 2 одним путчем, а затем обратно из состояния 2 в состояние 1 другим путем, получали бы выигрыш или потерю энергии Д(7в — А /а- Но по условию система изолированная, т. е. она не обменивается теплом и работой с окружающей средой и запас ее энергии согласно первому началу термодинамики должен быть постоянным. Таким образом, сделанное предположение ошибочно. Изменение внутренней энергии при переходе системы из состояния 1 в состояние 2 не зависит от пути процесса, т. е. внутренняя энергия является функцией состояния. [c.86]

    Макк [35] изучал механизм деформации битумных дорожных смесей под действием псстоянных нагрузок. Он пришел к заключению, что механические характеристики зависят от характера нагрузок, действующих на дорожное покрытие. Он указывает, что деформация битумных дорожных покрытий состоит из мгновенной и обратимой эластической деформации, за которой следует пластическая деформация, сопровождающаяся твердением. Процесс твердения зависит от вязкости и ускоряется с возрастанием сжимающего давления и продолжительности приложения нагрузок до их определенной величины. Макк считает, что дорожное покрытие в. состоянии отдыха обладает мшшмальжтй потенциальной энергией. Под действием нагрузок частицы, находящиеся в упорядоченном состоянии, редко покидают свое место, в то время как другие частицы перемещаются из состояния неупорядоченного в упорядоченное.. При максимальном значении коэффициента пластического сдвига число частиц в неупорядоченном состоянии приближается к нулю. Изменение свободной энергии активации перехода из неупорядочен-, ного в упорядоченное состояние и масса частиц также максимальны в этой точке. Процесс твердения битумного покрытия можно сравнить со слиянием неупорядоченных частиц в частицы большей, массы. [c.149]

    При растворении иногда наблюдается и изменение окраски. Напрнмер, белый сульфат меди Си804 образует водный раствор синего цвета за счет возникновения гидратированных аквокомплексов [Си (ОНз) ]- - Это связано с изменением природы лигандов, координированных вокруг центрального иона в комплексе (структурной единице), а следовательно, изменением величины параметра расщепления Д и энергии электронных переходов (стр. 129). [c.163]

    Кроме [Ni(OHa)e] + и [Ni(NH3)eJ2+ возможны смешанные аквоам-минокомплексы [Ni(OH2)e n(NH3) ] + (n=l-i-6). Замена лигандов НаО на лиганды H3N приводит к изменению окраски комплексов от ярко-зеленого до синего цвета. Это объясняется увеличением параметра расщепления Д (изменением энергии d— -переходов), что приводит к сдвигу полос поглощения в сторону меньших длин волн (рис. 259). Еще больший сдвиг полос поглощения наблюдается в случае этилен-диаминовых комплексов [Ni(en)3l= + (Д=11 200 jn" ), окраска которых интенсивно-синяя. [c.651]

    Увеличение склонности к мицеллообразованию в гомологических рядах объясняется усилением ван-дер-ваальсова взаимодействия цепей с ростом их длины, что повышает выигрыш энергии при переходе цепей из воды в неполярную фазу — ядро мицеллы. Существенна и роль энтропийного фактора с увеличением длины цепи возрастает положительное изменение энтропии, обусловленное разрушением айсберговых структур воды вокруг углеводородных радикалов при их ассоциации. [c.58]


Смотреть страницы где упоминается термин Энергия Изменение при переходе: [c.16]    [c.221]    [c.480]    [c.149]    [c.93]    [c.613]    [c.97]    [c.88]    [c.137]    [c.130]    [c.59]   
Теория резонанса (1948) -- [ c.0 ]




ПОИСК







© 2025 chem21.info Реклама на сайте