Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Спирты, химическая стойкость к ним

    Важное значение имеет химическая стойкость полипропилена [116]. При комнатной температуре он устойчив в водных растворах солей, мыл и моющих средств, разбавленных и концентрированных минеральных кислотах и щелочах, растворах перекисей, растительных и минеральных маслах, в спиртах. В углеводородах и хлорированных углеводородах полипропилен набухает, в сильно концентрированных окислителях (например, олеум, дымящая азотная кислота, бромистый водород, отбеливатели) — разлагается. Раствор иода и перманганата калия окрашивает полипропилен. [c.301]


    Полиизобутилен набухает в диэтиловом эфире, бутилацетате, животных и растительных маслах. Он нерастворим в низших спиртах, ацетоне, этиленгликоле, глицерине. Благодаря насыщенности полимерных цепей полиизобутилен обладает высоким сопротивлением к тепловому и световому старению, а также повышенной химической стойкостью. Высокая термостойкость полиизобутилена позволяет перерабатывать его при 140—200°С, при этом молекулярная масса практически не изменяется. Термическое разложение полиизобутилена происходит при 300 °С и выше. [c.338]

    Поливиниловый спирт широко применяется в химической промышленности для синтеза поливинилацеталей, в качестве эмульгатора при суспензионной и эмульсионной полимеризации винилацетата (марки ПВС 6/4, ПВС 7/2, ПВС 8/2, ПВС 8/14), суспензионной полимеризации стирола (марка ПВС 8/14), винилхлорида (марка ПВС 9/27) и других мономеров для производства синтетического волокна, обладающего высокой прочностью, стойкостью к истиранию, химической стойкостью, низкой теплопроводностью, гигроскопичностью, стойкостью к морской воде, воздействию микроорганизмов. Волокно из ПВС применяется как в чистом виде, так и в смеси с хлопком, шерстью, вискозой. Из него изготовляют рыболовные снасти, брезенты, химически стойкие фильтровальные ткани, спецодежду, специальные сорта бумаги и т. п. [c.243]

    Его химическая стойкость хуже химической стойкости полистирола и в большинстве агрессивных сред коэффициенты стойкости по изменению механических свойств — на 10—15% ниже (табл. III.16). В слабых кислотах и о.снованиях прочностные овойства ПММА изменяются незначительно, но резко ухудшаются в окислителях. В большинстве органических сред его прочностные показатели заметно снижаются, но бензин, жиры и масла на него почти не действуют. Растворители (ацетон, бензол, спирт) изменяют релаксацию напряжения ПММА до более низких уровней (вдвое и больше), чем вода, олеиновая кислота, гексан, керосин [14, с. 62-63]. [c.73]

    Свойства винипласта. Винипласт обладает высокой химической стойкостью к действию кислот, щелочей, бензина, масел, спиртов. Он является антикоррозионным материалом в интервале температур от О до 60 °С. Винипласт имеет хорошие электрические свойства, легко подвергается различной механической обработке (формованию, сварке). [c.30]

    Полиформальдегид является термопластичным материалом с высокой степенью кристалличности. По внешнему виду — это порошок или гранулы белого цвета. При комнатной температуре имеет высокую химическую стойкость к действию многих растворителей алифатических, ароматических и галогенсодержащих углеводородов, спиртов, эфиров и др. При действии концентрированных минеральных кислот и щелочей разрушается. Полиформальдегид является одним из наиболее жестких материалов, обладает высокой стойкостью к истиранию (уступает только полиамидам) и сжатию, низким коэффициентом трения, имеет незначительную усадку даже при 100—110°С и стабильность размеров изделий. Однако при повышенных температурах прочность его значительно уменьшается. [c.50]


    Химическая стойкость найлона не очень высока. Так, он относительно мало стоек по отношению к многим минеральным кислотам и сильным окислителям, но инертен к щелочам, жирным и ароматическим углеводородам, спиртам, кетонам и сероуглероду. При кипячении с 5% раствором H i он становится хрупким и затем рассыпается. [c.505]

    НК хорошо растворяется в бензине, бензоле, хлорированных углеводородах, но нерастворим в спиртах. Обладает высокой клейкостью. Плотность НК — 910-930 кг/м . Резины на основе натурального каучука имеют высокую эластичность, небольшие гистерезисные потери, низкое теплообразование при многократных деформациях, хорошие адгезионные и когезионные свойства. К недостаткам резин на основе НК относят их низкую масло- и химическую стойкость, старение под действием тепла, солнечного света, кислорода. [c.14]

    Таллий легко растворяется в азотной кислоте и несколько хуже в серной. Соляная кислота на него действует слабо из-за образования пленки малорастворимого хлорида. С щелочами не реагирует. Подобно щелочным металлам, способен давать алкоголяты при действии спирта в присутствии кислорода. Из-за малой химической стойкости слитки его при хранении на воздухе покрывают слоем лака. Если требуется избежать загрязнения поверхности, металл хранят под слоем прокипяченной дистиллированной воды в плотно закупоренных банках. [c.326]

    Полиизобутилен обладает высокой химической стойкостью к большинству кислот и щелочей, растворам солей и воде. Нерастворим в спиртах, эфирах, кетонах. Однако полиизобутилен сравнительно легко растворяется в ароматических и хлорированных углеводородах, нестоек к маслам и жирам, к действию солнечных лучей в присутствии кислорода воздуха. [c.123]

    Нитросоединения, нитроамины и азотные эфиры спиртов и углеводов весьма значительно различаются между собой по химическому строению, химической стойкости, чувствительности к механическим воздействиям, действию на них водорода в момент выделения, взаимодействию с концентрированной серной кислотой и по другим признакам. [c.15]

    По химической стойкости фторопласт-2 и фторопласт-2М уступают фторопласту-4. но с успехом выдерживают воздействие таких агрессивны химических сред, как 98%-ная азотная, 55%-ная серная, 35%-ная соляная. 85%-ная фосфорная, плавиковая кислоты, концентрированные щелочи, амины, гидразины, ароматические и хлорированные углеводороды, сухой и влажный хлор, этиловый спирт, этиленгликоль, керосин, бензин и др., при температурах от 20 до 130 °С. [c.193]

    Фторопласт-1 имеет более высокую химическую стойкость к различным агрессивным средам, чем нефторированные полимерные материалы, но уступает по этому показателю большинству фторопластов. Он стоек ко многим кислотам, не являющимся сильными окислителями, к действию соляной кислоты, едкого натра, хлора. Пленки фторопласта-1 устойчивы к кипящим четыреххлористому углероду, бензолу, ацетону, метилэтилкетону в течение 2 ч. Они не растворяются в спиртах (метиловом, этиловом), петролейном эфире, ксилоле и других летучих растворителях. [c.200]

    Г емицеллюлозы — полисахариды (гексозаны, пентозаны, полиуроновые кислоты), сопровождающие целлюлозу, но отличающиеся от нее меньшей длиной цепи и меньшей химической стойкостью. Гемицеллюлоза легче гидролизуется разбавленными минеральными кислотами и щелочами и переходит в раствор. Гексозаны при этом дают гексозы — сахара, способные бродить и образовывать спирт. Содержание гемицеллюлоз в зависимости от породы сильно различается так, в хвойных породах ее содержится 17—20%, а в лиственной древесине — 30—35%. [c.201]

    Трубы и детали из фаолита обладают высокой химической стойкостью ко многим агрессивным продуктам к водным растворам большинства органических и неорганических кислот и их солей, к влажным и сухим газам (хлору, хлористому водороду, сероводороду, сероуглероду, сернистому ангидриду), к некоторым растворителям и растворам спиртов и масел. Фаолитовые изделия химически стойки к бензолу. [c.75]

    Основное назначение присадок — стабилизаторов химической стойкости — улучшить сохраняемость топлива, удлинить сроки его хранения. Механизм действия присадок — стабилизаторов химической стойкости сводится к поглош ению окислов азота, выделяющихся в процессе хранения при медленном химическом или термическом разложении однокомпонентного топлива. Термическое разложение является общим явлением для всех однокомпонентных топлив, оно зависит от температуры заряда и идет тем быстрее, чем выше температура. Процесс термического разложения топлива определяется разложением нитратов целлюлозы и многоатомных спиртов. Химический, гидролитический распад однокомпонентного топлива объясняется течением процессов омыления, расщепления нитратов и их внутримолекулярного окисления. Гидролитические процессы значительно ускоряются в присутствии влаги воздуха, влаги и остатков кислот как технологических продуктов. В отличие от термического разложения при низких температурах при гидролитическом распаде не происходит выделения газообразных продуктов. При хранении, как правило, процессы химического разложения ускоряются за счет автокатализа. [c.165]


    Мы исследовали термическую и химическую стойкость анионита АВ-17-8 ири использовании его в качестве катализатора реакции оксиэтилирования высших спиртов. [c.28]

    В качестве рабочей жидкости в них применяют дистиллированную воду, этиловый спирт, керооин, четыреххлористый углерод, дибутилфталат и ртуть. Манометрическая жидкость должна обладать высокой химической стойкостью, малой вязкостью, малой испаряемостью, малым коэффициентом теплового расширения и быть неагрессивной по отношению к металлам, стеклу и резине. [c.31]

    Поливиниловые эфиры титановой кис.лочы отличаются высокой водостойкостью и химической устойчивостью. Гидролиза эфира ие наблюдается даже при длительном нагревании полимера в воде. Такую нс-обычную для сложных эф1[ров химическую стойкость поливиниловых эфиров титановой кислоты можно объяснить тем, что титап соединяется с поливиниловым спиртом не только эфирными, но и координационными связями. Макромолекулы этого полимера, очевидно, соединены между собой ячейками и ледующего строен ия  [c.301]

    БЕНЗИЛ ЦЕЛЛЮЛОЗА—простые ыЬк-ры целлюлозы и бензилового спирта. Б. > арактеризуется химической стойкостью, гндрофобностью и высокими электроизоляционными свойствами. Б. широко применяют в производстве различных пластмасс, пленок, электроизоляционных материалов и лаков. [c.40]

    Фурановые смолы применяют для изготовления композиций минерального наполнителя, мономера ФА и ионного отвердителя — сульфокислоты (1,5—2,0%). Пластбетон получается смешением этих компонентов. Введением в бетонную массу на основе минеральных вя-жуш,их фурфурилового спирта с солянокислым анилином или фур-фурамида получают полимербетоны. Из большого числа синтетических смол, выпускаемых отечественной промышленностью, фурановые смолы типа ФА или ФАМ обеспечивают наиболее высокую прочность и химическую стойкость полимербетонов на их основе. Эти смолы являются сравнительно дешевыми и недефицитными. [c.206]

    Для повышения химической стойкости полиметиленоксида необходимо блокировать его концевые гидроксильные группы, например, взаи модействием с метиловым спиртом. [c.338]

    Химическая стойкость материала заметно повышается при использовании этерифицированного резола в комбинации с фурфури-ловым спиртом или смолой на его основе [Ю]. Превосходной стойкостью к действию щелочей характеризуются материалы на основе фурановых смол, получаемых конденсацией фурфурилового спирта с формальдегидом [7, И]. [c.265]

    Цнклотрнметнлентрннитрозоамни предложен немецкой фирмой Вазап в качестве взрывчатого вешества. длв получения которого ие требуется крепкая азотная кнслота. Однако сравнительно низкая химическая стойкость явилась препятствием для его внедрения 106). Стойкость может быть повышена перекристаллизацией нз метн.ювого спирта илн ацетона 103]. [c.290]

    Теплостойкость БК позволяет широко использовать его в производстве паропроводных рукавов и транспортерных лент, применяемых при высоких температурах. Химическая стойкость вулканизатов БК к действию многих агрессивных сред (кислот, щелочей, растворов солей, кетонов, спиртов, Н2О2, азотсодержащих растворителей, пресной и морской воды, многих растительных масел и др.) обусловливает применение БК для гуммирования химической аппаратуры, эксплуатирующейся при температурах до 375-400 К, обкладки валов, изготовления кислотостойких перчаток, рукавов для перекачивания агрессивных агентов и т.п. [1,12, с.40 13.  [c.266]

    Фенолоформальдегидные олигомеры хорошо модифицируются путем 1) совместной поликонденсации фенола и формальдегида с другими мономерами, например карбамидом, фурфуролом, канифолью, бутиловым спиртом и др., 2) полимераналогичных превращений, 3) совмещения фенолоформальдегидных олигомеров с другими олигомерами и полимерами, например с карбамидоформальдегидными и эпоксидными олигомерами, полиамидами, полиацеталями и др. Модификация фенолоформальдегидных олигомеров преследует ряд целей, а именно, в одних случаях - придания отвержденным полимерам и материалам на их основе новых качеств, например ударной прочности, химической стойкости, термостойкости и др., в других случаях - для увеличения адгезионной стойкости клеев и связующих на их основе, придания им пластичности. Для придания маслорас-творимости олигомерам, используемым в лакокрасочной промышленности, их модифицируют и снижают полярность за счет блокировки фенольных гидроксилов. [c.67]

    СКЭПТ обладает высокой тепло- и озо(ностойкосты0, а также химической -стойкостью к ряду агрессивных сред (щелочам, кислотам, спиртам и т.д.), высокими диэлектрическими показателями, достаточной прочностью при растяжении и эластичностью. Технологические свойства каучука приведены ниже  [c.185]

    Декаборан В Н — твердое вполне стабильное вещество, обладает наибольшей химической стойкостью но сравнению с другими боро-водородами. Заметное разложение В Н наблюдается только выше 170°. Декаборан не реагирует с кислородом воздуха при комнатной температуре, а такн е ири 60°, но при 100° самовоспламеняется. Декаборан гидролизуется водой очень медленно при комнатной температуре, но быстро при кипячепии. Хорошо растворяется в спирте, эфире и бензоле [6]. [c.92]

    Утилизация фенолов из сточных вод жидкостной экстракцией основана на различной растворимости фенолов и воды в ряде органических растворителей. Процесс заключаете в обработке стоков растворителем, избирательно растворяющим фенолы, с последующим разделением образовавшихся фаз, удалением и регенерацией растворителя. Эффективность экстракции в первую очередь зависит от применяемого растворителя, к которому предъявляют следующие требования высокая растворяющая способность ло отношению к фенолам, доступность и низкая стоимость, минимальная растворимость в воде и хорошая расслаиваемость, отсутствие эмульгирующей способности, химическая стойкость пр регенерации, нетоксичность. До сих пор не найдено такого растворителя, который удовлетворял бы всем этим требованиям. Согласно многочисленным экспериментальным данным [13—16], удовлетворительные результаты при экстракции фенолов из сточных вод получаются при использовании в качестве растворителей простых и сложных эфиров, спиртов, кетонов, ароматических углеводородов, а также их смесей и фракций. Характеристика некоторых из них приведена в табл. 5.2.2. [c.345]

    Чиотнй пеятаарад,.тетрай-т плавится вря 144,0 Обладает высокой химической стойкостью. В воде йерастйорйМ в спирте и эфире трудно,в ацетоне хорошо Полное разложение наступает выше точки плавления, частично же при 140 145 начинается выделение нитрозных газов. Содержание азота 17,74 Кислородный баланс отрицательный (-10,1 ). [c.159]

    Гемицеллюлоза — полисахариды (гексозаны, пентозаны, полиуроновые кислоты), сопровождающие целлюлозу, но отличающиеся от нее меньшей длиной цепи и меньшей химической стойкостью. Гемицеллюлоза легче гидролизуется разбавленными минеральными кислотами и щелочами, переходя в раствор. Гексозаны при этом дают гексозы — сахара, способные бродить и образовывать спирт. [c.546]

    Среди них нужно отметить такие соединения, как сополимеры эфиров акриловой или метакриловой кислот с различными фторированными одио-атомными спиртами. Эти полимеры обладают эластическими свойствами и высокой химической стойкостью, так как основная полимерная цепь окружена достаточно длинными фторированными группами, защищающими ее от внешних воздействий. Практическое применение находит цолигептафторбутилакрилат (фторкаучук Р4)  [c.196]

    В узлах трения химического оборудования нашли применение полимерные материалы вследствие высокой химической стойкости, низкого коэффициента трения и достаточной износостойкости. Однако пластмассам присущи недостатки, не позволяющие использовать их непосредственно для изготовления контакти.-рующих при трении деталей. К основным недостаткам относятся нестабильность конструктивных размеров под влиянием температуры и нагрузок при работе в химических средах, недостаточная механическая прочность-, низкая теплопроводность и быстрое старение. Полимеры могут явиться также источником водородного износа, так как выделение водорода при трении пластмасс ведет к наводоро-живанию и охрупчиванию стальной поверхности [34]. Недостатки пластмасс устраняют в некоторой степени иаполнением тонкодисперсными порошками-наполнителями (нефтяной кокс, графит, двусернистый молибден и др.) использованием пластмасс в качестве связующего в полимерных композициях, например резольной фенолоформальдегидной смолы в растворе этилового спирта, новоЛач-ной смолы и др. армированием волокнами и тканями (стеклянная, углеродистая, хлопчатобумажная ткани, металлическая сетка и др.) пропиткой пористых конструкционных материалов, в том числе графитов, асбеста и др. нанесением на металлическую поверхность твердых смазок и лаков на основе пластмасс тонкослойной облицовкой полимерами металлических поверхностей изготовлением наборных вкладышей подшипников и других металлополимерных конструкций. Допускаемые режимы трения пластмасс даны в табл. 131г [c.200]

    Применяемые в настоящее время в композициях без растворителей эпоксидные смолы на основе бисфенола А имеют высокую вязкость (12.000—40.000 сП при 25°С). Модификация этих смол активными разбавителями, такими, как глицидиловые эфиры спиртов и фенолов, инертными разбавителями или пластификаторами типа ароматических эфиров, каучуков и низковязкой каменноугольной смолы, значительно снижает их вязкость. Особый интерес представляют эпоксидные смолы, модифицированные каменноугольной смолой и ее фракциями. Покрытия на их основе обладают почти универсальной химической стойкостью и широко применяются в судостроении, нефтяной и химической промышленности. [c.13]

    Наша страна внесла значительный вклад в развитие этой научной дисциплины. Начало исследований по химической стойкости металлов по-видимому следует связать с именем М. В. Ломоносова и его наблюдением резкого скачка устойчивости (пассивности) железа при повышении концентрации азотной кислоты ( селитряного спирта ). Однако наиболее систематические и широкие коррозионные исследования в России начинают развиваться после Октябрьской социалистической революции. Здесь, в первую очередь, надо отметить акад. В. А. Кистяковского, разработавшего фильмовую теорию коррозии, чл.-кор. АН СССР Н. А. Изгарышева, изучившего ряд важнейших вопросов электрохимической коррозии металлов, акад. А. Н. Фрум-кина, теоретически обосновавшего установление коррозионных (стационарных) потенциалов и механизм гомогенноэлектрохимического растворения металлов и особенно чл.-кор. АН СССР Г. В. Акимова, залолсившего основы структурной коррозии металлов, исследовавшего ряд важнейших теоретических и практических вопросов коррозии и создавшего советскую школу коррозионистов. [c.11]

    Фаолиты неустойчивы к действию азотной а хромовой кислот, йода, брома, щелочей, оиридинов, ацетона, спирта. Существенное влияние на свойства фаолитовых труб оказывает наполнитель.Анти-филлаговый асбест придает фаолиту высокую химическую стойкость, в то время как хризотиловый асбест снижает ее, но зато придает более высокую механическую прочность это и определяет необходимость сочетания асбестов обоих типов. [c.19]


Смотреть страницы где упоминается термин Спирты, химическая стойкость к ним: [c.69]    [c.478]    [c.128]    [c.141]    [c.106]    [c.141]    [c.160]    [c.76]    [c.141]    [c.292]    [c.134]    [c.425]   
Справочник механика химического завода (1950) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Спирт химический



© 2024 chem21.info Реклама на сайте